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Preface

The following work outlines a robust method for accounting the fuzziness of the objective space
while solving the real world optimization problems. Use of mean/approximated value of input
parameters doesn't account for the variability in the optimized solution inherited due to
variability in the input parameters which is very crucial, especially in real world problems.
Accounting the fuzziness of the variable space transforms a multi-objective optimization
problem to a multi-objective fuzzy optimization problem. Previous attempts to solve fuzzy
optimization problem tries to remodel the fuzzy optimization problems into real valued
optimization problems using mathematical reductions/transformations, extension principle,
interval arithmetic etc and hence solve them using traditional approach. Thus killing valuable
information concealed in the fuzziness of the problem and hence destroying the essence of the
problem.

The following work describes and evaluates a unique solution strategy for optimizing fuzzy
multi-objective problems by integrating genetic algorithms with concepts of fuzzy logic. The
unique way of problem formulation required no tweaking in genetic operators of mutation and
crossover but the concept of ranking has been carefully extended to fuzzy domain. The standard
benchmark test function, ZDT[4], have been extrapolated to fuzzy domain as FZDT and proposed
to be benchmark test function for fuzzy optimization algorithms. The results have been
successfully verified with FZDT test functions and were found coherent with ZDT test functions
under classical assumptions.



Chapter 1
Prologue

1.1 Introduction

Multi objective optimization problem is the process of simultaneously optimizing two or more
conflicting objectives subject to certain constraints. Such problems can be found in various
fields: product and process design, finance, aircraft design, the oil and gas industry, automobile
design, or wherever optimal decisions need to be taken in the presence of trade-offs between
two or more conflicting objectives. Genetic algorithms are a particular class of evolutionary
algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation,
selection, and crossover and is the most commonly used search techniques in computing to find
exact or approximate solutions to such optimization and search problems.

In real world problems, parameters of a process are never precisely fixed to a definite value.
Transients, noise, measurement errors, Instrument’s least count etc makes it even more difficult
to know their exact value at any time stamp. Even if externally regulated, parameters have some
variability in their values. This variability has been continuously ignored by using
mean/approximated/fixed value of the parameters thus losing the precious information about
the variability in the final optimized solution.

For example, in an isothermal process, temperature is externally controlled at a certain fixed
level. In general, for calculations or optimizations, temperature is taken constant at that
specified level. But, there is always variability or fuzziness about the fixed value in such
controlled parameters which needs to be preserved and reflected in the final results.

1.2 Literature review

There exists a number of works attempting to solve the fuzzy optimization problem. However
almost all the previous approach tries to remodel the fuzzy optimization problems into crisp real
optimization problems and hence solve them using traditional approach. Ribeiro. R. A. and F. M.
Pires [10] discussed a fuzzy linear programming using simulated annealing algorithm. The work
outlines a simulated annealing algorithm which provides a simple tool for solving fuzzy
optimization problem. Often the issue is not how to fuzzify or remove the conceptual
impression, but which tool enables simple solutions for these intrinsically uncertain problems.

Bucklet et al. [11] showed that it is possible to train a layered feed forward neural net, which
with certain sign restriction on its weights gives approximates solution to the fuzzy optimization
problem. Buckley and feuring [12] applied the evolutionary algorithm to two classical fully
fuzzified programs to show that It can produce good approximate results.



Jamison and lodwick [7] proposed a penalty method for characterizing the constant violation to
formulate the problem as an unconstrained fuzzy optimization problem. The objective is them
redefined as optimizing the expected midpoint of the image of the fuzzify function.

Wang and Wang [8] transformed the fuzzy linear programming problem into a multiobjective
problem with parametric interval valued multiobjective linear programming problem.

Chiang [9] used statistical data to formulate statistical confidence interval and to derive interval
valued fuzzy numbers. Then the estimated value of the constraint coefficient is generated to
form a flexible linear programming problem.

1.3 Objectives

Following work focuses on solving multi-objective fuzzy optimization problem addressing the
concerns mentioned above. Our approach can be broken down into following objectives:

1. Multi objective fuzzy optimization problem formulation and mapping real variable space
to fuzzy decision space.
Extend the ZDT functions (FZDT) to make them compatible with fuzzy environment.

3. Develop Fuzzy Genetic Algorithm working from a real variable space to fuzzy decision
space and test it using the extended FZDT functions.



Chapter 2
Fuzzy Number

2.1 Fuzzy Sets

If X is a collection of objects denoted generically by x then a fuzzy set A in X is a set of ordered
pairs: A= {(x, pa(x)) / x € X} where pz(x) is called the membership function or grade of
membership of x in A which maps X to the membership space M .The range of the membership
function is a subset of the nonnegative real numbers whose supremum is finite. Elements with a
zero degree of membership are normally not listed.

2.2 Fuzzy Numbers

2.2.1 Generalized Fuzzy Number
A is a generalized fuzzy number as shown in Fig-1. It is described as any fuzzy subset of the real
line R, whose membership function p, satisfies the following conditions:

1. pi(x) is a continuous mapping from R to the closed interval [0, 1],
2. WA(x) =0, -inf<x <al,
3. WA(x) =L(x) is strictly increasing on [al, a2]
4. pA(x) =w, , a2<x <a3,
5. Ha(x) =R(x) is strictly decreasing on [a3, a4]
6. HA(x) = 0, a4 <x <inf,
S
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The graded mean A-level value of generalized fuzzy number 4 = (ay, as, a5, as, wy ) 5

Fig 2.1: Generalized Fuzzy Number

Where 0 <wx<1, and al, a2, a3, and a4 are real numbers. Also this type of generalized fuzzy
number be denoted as A = (al, a2, a3, a4; w,)r. When w, = 1, it can be simplified as A = (al, a2,
a3, ad)g.



2.2.2

2.2.3

Two types of fuzzy numbers are taken into consideration in this study- one with triangular
membership function and other with trapezoidal membership function.

Triangular Fuzzy Number

[
1
A triangular fuzzy number A is denoted as (a,o,B).
Here
a: the leftmost point where ps(x) takes the value 1. l
1]

a: the spread of the fuzzy number to the left of a.

B: the spread of the fuzzy number to the right of a.

Fig 2.2: (Triangular membership function)

Trapezoidal Fuzzy Number

A trapezoidal fuzzy number A is denoted as (a,b,a,B).

uod 1
1
Here
[+]

y

a: the leftmost point where pz(x) takes the value 1.

wg E«-ﬂ
a

b: the rightmost point where px(x) takes the value 1. b

Fig 2.3: (Trapezoidal membership

a: the spread of the fuzzy number to the left of a. function)

B: the spread of the fuzzy number to the right of b.

2.3 Algebraic Operators

Following definitions of arithmetic operators were used while defining test functions for fuzzy
decision space.

* For triangular membership functions take a=b.

1) Addition: Let A =(a;, by, a1, B1)and N =(a,, by, o, B2) be two fuzzy numbers to be
added. Then



A + N = (al+a2, b1+b21 o+ ap, Bl+ Bz)
2) Subtraction: Let A =(ay, by, a;, B1) and N =(a,, by, az, B,) be two fuzzy numbers to be
subtracted. Then
A=N=(ar-by, bi-ay, as+ B2, P1t a3)
3) Multiplication: Let A = (a4, by, o4, B1) and N = ( ay, by, oz, B2 ) be two fuzzy numbers to
be multiplied. Then
~ Xk .
A 7 N=(al*a;, bi*by, |a1|* a;+ai*|ay|, | by|* B+ B1*| b2 )

4) Division: Let A = (ay, by, ai, B1) and N =(a,, bo, 0, B2) be two fuzzy numbers to be
divided. Then

A/N=(al/b2,b1/az,{|al|* Bz+a1*|b2|}/b22,{| bi|* a,+ B1*| 32|}/322)

5) Square Root: The square root of A =(ay, by, a;, B1) has been defined as

VA= (\/ al’\/ b1,0L1/2\/ al,Bl/\/ bl)
6) Power: An integer power N of A = (ay, by, a;, B1)has been defined as

AAN: (a1, by, a1, B1) *( a1, by, az, B1) *....c... *(ay, by, ag, B1) (N times)
7) Exponential: The expansion formula for the exponential of any number A is

exp(A)=1T+A+A%/21+A% /31 + ... with 2,3,.... as crisp numbers.

2.4 Trigonometric Operators

1) Sine: The expansion formula for the sine of any number A is
Sin (A)= A—A3/31+A%/51=K7/7! + ....with 3,5,7,.... as crisp numbers.
2) Cosine: The expansion formula for the cosine of any number A is

COsS (A) “T-A 2121+ A%/41 =K °/6! + .....with 1,2,4.... as crisp numbers.

2.5 Graded Mean Integration (GMI)

Graded Mean Integration is a method of comparing two fuzzy numbers. We compare the
numbers based on their defuzzified values. The number with higher defuzzified value is larger.
The general formula for Graded Mean Integration is given by:

L*'(h) +R"'(h)
2

P(A) =(j0““ h( ydh)/ jow" hdh.



Where L(h) and R(h) are the left and right shape functions, respectively and w, is the maximum
value attained by L(h) and R(h) whereas the minimum value is zero. For a trapezoidal fuzzy
numberA=(a,b,a,B)itreducestoP(A )=(3a+3b+B-a)/6.



Chapter 3
Genetic Algorithms

3.1 Genetic Algorithms (GA)

Genetic Algorithms are probabilistic search algorithms which simulate natural evolution. In
these algorithms the search space of a problem is represented as a collection of individuals.
These individuals are represented by character strings or matrices which are often referred to as
chromosomes. The purpose of using a genetic algorithm is to find the individual from the search
space with the best “genetic material”. The quality of an individual is measured with an
evaluation function. The part of the search space to be examined is called the population.

First, the initial population is chosen, and the quality of this population is determined.
Next, in every iteration, parents are selected from the population. These parents produce
children which are added to the population. For all newly created individuals of the resulting

IM

population a probability near to zero exists that they will “mutate” i.e. that they will change
their hereditary distinctions. After that, some individuals are removed from the population
according to a selection criterion in order to reduce the population to its initial size. One

iteration of the algorithm is referred to as a generation.

The operators which define the child production process and the mutation process are
called the crossover operator and the mutation operator respectively. Mutation and crossover
play different roles in the genetic algorithm. Mutation is needed to explore new states and helps
the algorithm to avoid local optima. Crossover should increase the average quality of the
population. By choosing adequate crossover and mutation operators, the probability that the
genetic algorithm results in a near optimal solution in a reasonable number of iterations is
increased. There can be various criteria for stopping AGA. For example, if it is possible to
determine previously the number of iterations needed.

A typical genetic algorithm requires two things to be defined:

1. A genetic representation of the solution domain,
2. A fitness function to evaluate the solution domain.

A standard representation of the solution is as an array of bits. Arrays of other types and
structures can be used in essentially the same way. The main property that makes these genetic
representations convenient is that their parts are easily aligned due to their fixed size, that
facilitates simple crossover operation. Variable length representations were also used, but
crossover implementation is more complex in this case. Tree-like representations are explored
in Genetic programming.



3.2 Fitness Function

A fitness function is a particular type of objective function that quantifies the optimality of a
solution. The fitness function is defined over the genetic representation and measures the
quality of the represented solution. The fitness function is always problem dependent. For
instance, in the knapsack problem we want to maximize the total value of objects that we can
put in a knapsack of some fixed capacity. A representation of a solution might be an array of
bits, where each bit represents a different object, and the value of the bit (0 or 1) represents
whether or not the object is in the knapsack. Not every such representation is valid, as the size
of objects may exceed the capacity of the knapsack. The fitness of the solution is the sum of
values of all objects in the knapsack if the representation is valid, 1or 0 otherwise. In some
problems, it is hard or even impossible to define the fitness expression; in these cases,
interactive genetic algorithms are used. To achieve maximization, a fitness function F(x) is first
derived from the problem’s objective function f(x) and one sets F(x) = f(x). For minimization,
several transformations are possible. One popular transformation is

F(x) = 1/(1+f(x))

This transformation does not alter the location of the minimum, but it converts the original
minimization problem into a maximization problem.

3.3 Genetic Search Process

GAs begin with a population of randomly selected initial solutions — a population of random
strings representing the problem’s decision variables {xi}. Thereafter, each of these initially
picked strings is evaluated to find its fitness. If a satisfactory solution (based on some
acceptability or search stoppage criterion) is already at hand, the search is stopped. If not, the
initial population is subjected to genetic evolution to procreate the next generation of candidate
solutions. The genetic process of procreation uses the initial population as the input. The
members of the population are “processed” by three main GA operators — reproduction,
crossover and mutation to create the progenies (the next generation of candidate solutions to
the optimization problem at hand). The progenies are then evaluated and tested for
termination. If the termination criterion is not met, the three GA operators iteratively operate
upon the population. The procedure is continued till the termination criterion is met. One cycle
(iteration) of these operations to produce offspring is called a generation in the GA terminology.

3.4 GA operators

3.4.1 Reproduction
This is usually the first operator that is applied to an existing population to create progenies.
Reproduction first select good parent solutions or strings to form the mating pool. The essential



3.4.2

idea in reproduction is to select strings of above average fitness from the existing population
and insert their multiple copies in the mating pool, in a probabilistic manner. This results in a
selection of existing solutions with better than average fitness to act as parents for the next
generation. One popular reproduction operator uses fitness proportionate selection in which a
parent solution is selected to move to the mating pool with a probability that is proportional to
its own fitness. Thus, the i"™ parent would be selected randomly with a probability pi
proportional to f;, given by

Pi= fi /2fi
Treated in this manner, a solution that has a high fitness will have a higher probability of being
copied into the mating pool and thus participate in parenting offspring. On the other hand, a
solution with a smaller fitness value will have a smaller probability of being copied into the
mating pool.

Crossover

Crossover is also known as “recombination”. In the Crossover operation exchanging information
among the strings present in the mating pool creates new strings (solutions). Recall that a string
representation of a solution contains “information” in its “genes” the bits that make up the body
of the string. For instance, the string 010111 contains specific information in the six distinct
positions, as do chromosomes in natural genetics. In Crossover, two strings are picked from the
mating pool and some portions of these strings are exchanged between them.

N
000000 001111
9
111111 110000
Parent strings Two new progeny

created by Crossover

It is expected from the above operation that if good substrings from the parents get combined
by Crossover, the children are likely to have improved fitness. Further, because a “pressure” is
exerted by survival of the fittest selection method used in forming the mating pool, when good
strings are created in the progenies by Crossover, they help the search process by propagating
their superior characteristics in the ensuing generations. However, since the location of the
appropriate site of crossover cannot be known a priori without considerable additional
computation, a random site is chosen in practice. Still the effect of crossover can be detrimental
or beneficial. Therefore, to preserve some of the good strings in the mating pool, not all strings
in the mating pool are used in crossover. A Crossover probability (p.) is used to decide whether a
given member of the mating pool will be crossed.

10



3.4.3 Mutation

While a crossover operator attempts to produce new strings of superior fitness by effecting
large changes in a string’s makeup (this is akin to large jumps in search of the optimum in the
solution space), the need for local search around a current solution also exists. This is
accomplished by mutation. Mutation is additionally aimed to maintain diversity in the
population. Mutation creates a new solution in the neighborhood of a current solution by
introducing a small change in some aspect of the current solution. For example, if binary coding
is being used, a single bit in a string may be altered (from 0 to 1, or 1 to 0) with a small
probability with a small probability, creating a new solution.

Bit being mutated New bit
N2 NZ
110110 - 111110
(original bit string) (bit string after mutation)

Thus, crossover aims at recombining parts of good substrings from good parent strings to
hopefully create a better offspring. Mutation, on the other hand, alters a single child string
locally to hopefully create a superior child string.

3.5 Genetic algorithm framework

A Genetic Algorithm works roughly as follows:

BEGIN AGA
Make initial population at random.
WHILE NOT stop DO
BEGIN
Select parents from the population.
Produce children from the selected parents.
Mutate the individuals.
Extend the population adding the children to it.
Reduce the extend population.
END
Output the final population reached.
END AGA

3.6 NMGA: The New Multi-objective Genetic Algorithm

Like many of its predecessors [1-2] this new multi-objective Genetic Algorithm (NMGA)
implements the condition of weak dominance that could be stated as follows for a constrained
minimization problem

11



Minimize Objective Functions: fi(X) i=1,2,..,1
Subject to Constraints: gj(X) i=1,2,.,)
Where X = (Xk :k=1,2,.....,K) is a K-tuple vector of variables,

Let an I-tuple vector of objectives is defined as:
Qi = (f | i= 1, 2,...., |)
Then the condition for dominance between any two objective vectors can be taken as:
(Q.’ =< Qm ) =t (\V/] )(ﬁi = ﬁm )/\ (Elm )(]rn’ < r'm')
In other words, if one particular solution is at least as good, or better in terms of all the objective

functions, when compared to another solution, and definitely better in terms of at least one
objective function, it is considered to be a weakly dominating solution.

In NMGA this condition has been implemented in a discretized functional space. Further details

are provided below.

3.6.1 Discretization of the functional space

index s \
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y ;
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1 — |
! ey 2e
3 AT |
Ly N ’ \\ - o
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—I", \\ \
o ? \1
: 1
6 \ |
\
L] 1 l
\ !
L] ‘ |
v
m 1 -
__________ S el 5
Main e
population s

Fig 3-1: Mapping to Functional space
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In this algorithm a traditional Genetic Algorithm population is mapped on to the functional
space, as demonstrated in Figure 3.1

Each member is assigned to a discrete grid in the function space. For a system of | objective
functions, the index of the grid can be designated through an integer coordinate system (g, g»,
..... g), related to the corresponding objective functions as:

@
i~
@ _ D
i =

g, =|nX

Where the subscripts indicate the lower and upper bounds of the function and n denotes the
total number of grids that the user needs to specify. A particular grid location, in principle, can
be inhabited by more than one members of the population, provided they have got identical
indices.

3.6.2 The neighborhood and the recombination process

N INE
1) C E
S5 3 | BE

(b)

Fig 3-2: The neighborhoods used in NMGA (a) Von-Neumann (b) Moore

Once the entire population is mapped on to the functional space, a neighborhood [19-20] is
assigned to each of them. In this algorithm one has the choice between the Von-Neumann and
Moore neighborhoods, illustrated schematically in Figure 3.2.

Genetic recombination is conducted in the neighborhood by crossing over the central member C
with a random partner picked up from the shaded region. In case no solutions other than C were
present in the original neighborhood, it was further expanded by adding some more layers of
grids, but retaining the original symmetry, till at least, one more member was encountered. The

13



3.6.3

3.6.4

children are also placed in the functional space, and subsequently, a pruning of the population
takes place, as detailed below.

Ranking the population

Once the genetic recombination and mutation gets over, all the dominated individuals in the
neighborhood are deleted. The resulting population is then ranked, following either the
Goldberg [21] or the Fonseca [22] approach. In the former, the non-dominated members of the
population are taken out of the population as rank 1. The truncated population is again checked
for dominance and the non-dominated set is once again removed out of it, this time as rank 2
members, and the procedure continues. In the Fonseca [22] strategy the entire population is
checked for dominance and the ranks to the individuals are assigned using the formula:

Ri= 1 +Nyg
where Riis the rank of the individual i, and Na is the number of individuals that dominate it. In
this study The Fonseca approach was preferred as it reduces the computational burden. The
population is further downsized, based upon the rank information, as detailed below.

Rank based population sizing

Since NMGA keeps both the parents and the children in the main population, the population
size tends to grow, often unmanageably, even after removing the dominated solutions in the
neighborhood. Based upon the rank information, the population is therefore trimmed further,
and the procedure adopted is as follows:

The main idea behind this population sizing procedure is to ensure that all types of members are
present in the final set of size S that the member specifies. Initially all the individuals are ranked
using the Fonseca and Fleming strategy and the permitted number of individuals in the final set
is computed by the function:

Ng = No *e®

Here, N; denotes the permitted number of individuals of rank R, Ny is a constant calculated
using the value of S. There is no upper limit on the value of rank and so, in principle, we can
assume that the maximum rank is infinity while the lowest, by definition, is unity. The
individuals having the rank of ‘1’ constitute the Pareto-front. The total set should be equal to
the sum of the permitted number of individuals of all ranks, such that

S=N;+Ny+N3+.... Noo
Substituting the values of N;, N,, N3 ...... N.into the above equation, the final equation becomes:
S=Np*(e-1+e-2+..+e-o0)
Summing the infinite series in geometric progression, the value of is calculated as:
No =S * (e-1)

14



However, by doing so, the value N, of will be less than 1 for the ranks above In(Ng). Such
individuals will have no representation in the main population even though some space might
be still available. In order to accommodate them the original function has been slightly modified
and is taken as:

maX[NO xe’R,l] if iN] %5
R =1

0 otherwise

The next generation starts with the down sized population. The basic steps of this algorithm are
shown schematically in Figure 3:

[ FOR EACH MEMBER )D[ FIND NEIGHBORS ]

'

SELECT A NEIGHBOR
RANDOMLY

!

PERFORM CROSSOVER
AND MUTATION

}

PARENTS REMAIN
ALONG WITH TWO

PRODUCED CHILDREN
L A

l

DELETE DOMINATED
MEMEERS AFTER
RANKING IN THE

NEIGHBORHOOD

NMZOoOHHAPIEZEAQ®

~

~

POPULATION SIZING
CONDUCTED USING
THE RANEK VALUES

MATN POPULATTOMN

FUNCTION SPACE

Fig 3-3-3: NSGA

3.7 NSGAII

NSGA [18] is a popular non-domination based genetic algorithm for multi-objective
optimization. It is a very effective algorithm but has been generally criticized for its
computational complexity, lack of elitism and for choosing the optimal parameter value for
sharing parameter Ogh.e. A modified version, NSGA-Il [13] was developed, which has a better
sorting algorithm, incorporates elitism and no sharing parameter needs to be chosen a priori.

15



3.7.1

3.7.2

>

>
>

The initialized population is sorted based on non-domination into each front. The first front
being completely non-dominant set in the current population and the second front being
dominated by the individuals in the first front only and the front goes so on. Each individual in
the each front are assigned rank (fitness) values or based on front in which they belong to.
Individuals in first front are given a fitness value of 1 and individuals in second are assigned
fitness value as 2 and so on. In addition to fitness value a new parameter called crowding
distance is calculated for each individual. The crowding distance is a measure of how close an
individual is to its neighbors. Large average crowding distance will result in better diversity in
the population. Parents are selected from the population by using binary tournament selection
based on the rank and crowding distance. An individual is selected in the rank is lesser than the
other or if crowding distance is greater than the other 1. The selected population generates
offspring from crossover and mutation operators. The population with the current population
and current offspring is sorted again based on non-domination and only the best N individuals
are selected, where N is the population size. The selection is based on rank and the on crowding
distance on the last front.

Population Initialization
The population is initialized based on the problem range and constraints if any.

Non-Dominated sort
The initialized population is sorted based on non-domination. An individual is said to dominate
another if the objective functions of it is no worse than the other and at least in one of its
objective functions it is better than the other. The fast sort algorithm [16] is described as below
for each
for each individual p in main population P do the following
e Initialize S, = @. This set would contain all the individuals that is being dominated by p.
e Initialize n, = 0. This would be the number of individuals that dominate p.
e for each individual gin P
- if pdominated q then add g to the set S,i.e. S, =S, U {q}
- else if g dominates p then increment the domination counter for pi.e.np =n, +
1
e |fn,=0i.e. noindividuals dominate p then p belongs to the first front; Set rank of individual
p to one i.e prank = 1. Update the first front set by adding p to front onei.e F; = F, U {p}
This is carried out for all the individuals in main population P.

Initialize the front counter toone.i=1
Following is carried out while the i™ front is nonemptyi.e. F;# @
e Q=@. The set for storing the individuals for (i + 1) front.
e for each individual p in front F;
- foreachindividual g in Sp (Sp is the set of individuals dominated by p)
ng = n,il, decrement the domination count for individual g.

if ng = 0 then none of the individuals in the subsequent fronts would

dominate g. Hence set gronk = i + 1. Update the set Q with individual g

i.e.Q=QU{q}
- Increment the front counter by one.
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- Now the set Qis the next front and hence F; = Q.
This algorithm is better than the original NSGA ([5]) since it utilize the information about the set
that an individual dominate (S,) and number of individuals that dominate the individual (n,).

3.7.3 Crowding Distance
Once the non-dominated sort is complete the crowding distance is assigned. Since the
individuals are selected based on rank and crowding distance all the individuals in the
population are assigned a crowding distance value. Crowding distance is assigned front wise and
comparing the crowding distance between two individuals in different front is meaning less. The
crowing distance is calculated as below

» For each front F;, n is the number of individuals.
e Initialize the distance to be zero for all the individuals i.e. Fi(d;) =0,
where j corresponds to the jth individual in front F;.
e for each objective function m
- Sort the individuals in front F; based on objective mi.e. | =sort(F;m)
- Assign infinite distance to boundary values for each individual in F;i.e. [(d) = o=
and I(d,) = oo
- fork=2to(n-1)
I(dy) = I(dy) + Ik+1)m—I(k—1).m

mar __ fmz'n
m Jdm

- I(k).m is the value of the m"" objective function of the k™ individual in |

The basic idea behind the crowing distance is finding the Euclidian distance between each
individual in a front based on their m objectives in the m dimensional hyper space. The
individuals in the boundary are always selected since they have infinite distance assignment.

3.7.4 Selection

Once the individuals are sorted based on non-domination and with crowding distance assigned,
the selection is carried out using a crowded-comparison-operator (<,). The comparison is
carried out as below based on
(1) Non-domination rank prank i.€. individuals in front F; will have their rank as prank = i.
(2) Crowding distance Fi(d;)
e p<,qif
Prank < Qrank
- orif pand q belong to the same front F; then Fi(d,) > Fi(d,) i.e. the
crowding distance should be more.
The individuals are selected by using a binary tournament selection with crowed comparison
operator.
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3.7.5 Genetic Operators
Real-coded GA's use Simulated Binary Crossover (SBX) [15], [14] operator for crossover and
polynomial mutation [16], [17].

ek ==[(1 = Br)p1x + (1 + Br)p2k]

cok ==[(1+4 Br)p1x + (1 — Br)p2k]

b = bo| =

3.7.5.1 Simulated Binary Crossover
Simulated binary crossover simulates the binary crossover observed in nature and is give as

below.
1
p(B) =5 (e + 1), f0<F <1
1 1 :
p(ﬁ) :i(T?C =l 1)@, if 8 > 1.

where ¢ is the i™ child with k™ component, p; is the selected parent and B (= 0) is a sample
from a random number generated having the density

B(w) =(2u) 7D

Blu)=——

[2(1 — u)] @O

This distribution can be obtained from a uniformly sampled random number U between (0, 1).
Ne (This determine how well spread the children will be from their parents) is the distribution
index for crossover. That is

3.7.5.2 Polynomial Mutation

cr = pr + (P — ph)ok

Where c is the child and py is the parent with py being the upper bound on the parent

component, p,l( is the lower bound and &y is small variation which is calculated from a
polynomial distribution by using

1
Ok :(2?";;)7?771 g o 1, ifry <0.5

1
O =1—[21 —r)]m +1 ifry > 05

re is an uniformly sampled random number between (0; 1) and n, is mutation distribution index.
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3.7.6 Recombination and Selection

The offspring population is combined with the current generation population and selection is
performed to set the individuals of the next generation. Since all the previous and current best
individuals are added in the population, elitism is ensured. Population is now sorted based on
non-domination. The new generation is filled by each front subsequently until the population
size exceeds the current population size. If by adding all the individuals in front F; the population
exceeds N then individuals in font F; are selected based on their crowding distance in the
descending order until the population size is N. And hence the process repeats to generate the
subsequent generations.

Non-dominated Crowding
sorting distance
sorting

Fy

F,

F

- pt

-=—Rejected

Fig 3-4: NSGA |l Procedure
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Chapter 4
Performance measures
&Test functions of GA

4.1 Performance measures

Evaluating and comparing different optimization techniques experimentally always involves the
notion of performance. In the case of multiobjective optimization, the definition of quality is
substantially more complex than for single-objective optimization problems, because the
optimization goal itself consists of multiple objectives:

1. The distance of the resulting nondominated set to the Pareto-optimal front should be
minimized.

2. A good (in most cases uniform) distribution of the solutions found is desirable. The
assessment of this criterion might be based on a certain distance metric.

3. The extent of the obtained nondominated front should be maximized, i.e., for each
objective, a wide range of values should be covered by the nondominated solutions.

Deb (1999) identified several features that may cause difficulties for multiobjective EAs in

1) Converging to the Pareto-optimal front

2) Maintaining diversity within the population.
Concerning the first issue, multimodality, deception, and isolated optima are well-known
problem areas in single-objective evolutionary optimization. The second issue is important in
order to achieve a well distributed nondominated front. However, certain characteristics of the
Pareto-optimal front may prevent an EA from finding diverse Pareto- optimal solutions:
convexity or nonconvexity, discreteness, and nonuniformity. For each of the six problems
features mentioned, a corresponding test function, called ZDT Test Function, was constructed
following the guidelines in Deb (1999).

4.2 Test functions

Functions belonging to the ZDT series of test functions [] are well known benchmark functions
for testing GA. These functions checks the convergence and scalability of a GA on parameters
like: Convex/Non convex optimal fonts, Continuous/Discontinuous fonts, Sparsely/Densely
populated fonts etc. Each of the test functions defined below is structured in the same manner
and consists itself of three functions: f, g and h
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4.2.1

4.2.2

4.2.3

4.2.4

Minimize 7T(x) = (fi(z1), f2(x))
SUbjﬁCt to f2(xj = g(ﬂ‘_), :x-m)h‘(.fl(ml):g("r2:--'1xrn)j
where x = (x1,...,25)

The function f; is a function of the first decision variable only, g is a function of the remaining
(m-1) variables, and the parameters of h are the function values of f; and g. The test functions
differ in these three functions as well as in the number of variables m and in the values the
variables may take.

ZDT1
The test function ’ZDT1’ has a convex Pareto-optimal front:

fi(zy) = I
Q(IE:- e -13:?:1} = 14 9 2::;3 T”"’(?ﬁ. - 1}
h’(flzgj = 1—\-‘f1,('r9

Where m =30 and X; €[0,1] The Pareto-optimal front is formed with g(X) =1

ZDT2
The test function ’ZDT2’ is a non convex counterpart of ZDT1.

fl(-’iﬁ'l) = I
g(xe, ... 2m) = 149-3", x;/(m—1)
h(f1,9) = 1-(fi/g)?

Where m =30 and X; €[0,1] The Pareto-optimal front is formed with g(x) =1

ZDT3
The test function ‘ZDT3’ represents the discreteness feature; its Pareto-optimal front consists of
several noncontiguous convex parts.

f] (ﬂ"]) - m
glza,....em) = 149> _,zif(m—-1)
h(fi.9) = 1=+/h/g—(fi/g)sin(107 f1)

Where m =30 and X; €[0,1]The Pareto-optimal front is formed with g(x) =1. The introduction

of the sine function in h causes discontinuity in the Pareto-optimal front. However, there is no
discontinuity in the parameter space.

ZDT4
The test function ‘ZDT4’ contains 2*° local Pareto-optimal fronts and, therefore, tests for the
EA’s ability to deal with multimodality
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4.2.5

4.2.6

fi(zy) = m |
g(ze,...,zy) = 1410(m—1)+ 3", (27 — 10cos(drz;))

1=2
h(f1,9) = 1-+/fi/g
where m=10, X, €[0,1], and X,,.....,X,, €[-5,5]. The global Pareto-optimal front is formed with

g(x) =1, the best local Pareto-optimal front with g(x) =1:25. Note that not all local Pareto-optimal
sets are distinguishable in the objective space.

ZDT5
The test function ‘ZDT5’ describes a deceptive problem and distinguishes itself from the other

test functions in that X; represents a binary string:

fi(z1) = 14+ u(xy)
Q'[:ir;31 e 'T:‘J’J’t) —-_ 21”:3 T.-‘('-‘i-(.?,‘z'j])
h(fi,9) = 1/f

where U(X;) gives the number of ones in the bit vector X; (unitation),

s =340 )

where m=11, X, €[0,1]*, and X,,.....,X, € {0,1}. The true Pareto-optimal front is formed with
g(x) =10 while the best deceptive Pareto-optimal front is represented by the solutions for

which g(x)=11. The global Pareto-optimal fronts as well as the local ones are convex.

ZDTe6
The test function ‘ZDT6’ includes two difficulties caused by the nonuniformity of the search
space: first, the Pareto-optimal solutions are nonuniformly distributed along the global Pareto

front (the front is biased for solutions for which fl(X) is near one); second, the density of the

solutions is lowest near the Pareto-optimal front and highest away from the front:

filxy) = 1 —exp(—4a)sin®(67z;) |
g["rﬂz--'-:mrn) = 149 ((Z:ig I-gjf('nl - 1))“"“!}
h(f1.9) = 1-(fi/g)?

Where m =10 and X; €[0,1] The Pareto-optimal front is formed with g(X) =1and is nonconvex.
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Chapter 5
Solution strategy:
Fuzzy genetic algorithm

5.1 Problem Formulation

In real world problems, the input parameters of an optimization problem inherit variability due
to external factors. Variability of such parameters is being accounted by taking them fuzzy in
nature about the mean/fixed value. The membership function of such parameters can easily be
determined by repetitive observations and by analyzing extensive data set. Decision variable
however are assumed to be crisp real numbers. Thus our result accounts and reflects the
variability of the plug-in parameters while fixing the decision variable at exact values. Since the
optimization problem aims to determine the optimized value of decision variables (with no
inherent variability) based on the information concealed within the input parameters (with
inherent variability) and the objective space. This completely justifies our assumption of taking
decision variables to be crisp real numbers and input parameters as fuzzy numbers.

5.2 Fuzzy Optimization Problem

A multi-objective fuzzy constrained optimization problem can be represented as:

Minimize Objective Functions: fi(A,X) i=1,2,...,I (1)
Subject to Constraints: gj(A,X) i=1,2,.,]) (2)

Where A= (xm :m=1,2,....,M) is a M-tuple vector of fuzzy variables,

X= (an :n=1,2,....,N) is a N-tuple vector of decision variables,
As per the problem formulation, decision space is a fuzzy space and the fi's and gi's are fuzzy

numbers.

5.3 Fuzzy genetic algorithm (FGA)

5.3.1 FGA Framework
FGA follows the basic framework of a genetic algorithm.

BEGIN FGA
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5.3.2

5.3.3

5.3.4

Generation_count =1

Random initialization of parent population.

WHILE converging criteria = false
BEGIN
Select parents from the population.
Produce children from the selected parents using genetic operators.
Extend the population adding the child population to parent population.
Rank the extended population.
Size the extended population to obtain the next generation.
Generation_count= Generation_count+1
END

Output the final population.

END FGA

Fuzzy adaptation of the individual GA steps and other important FGA terminologies has been
discussed below.

Initialization:

First generation of individuals is randomly initialized. Individuals are represented as
strings/arrays/matrices of variables called chromosomes. Since decision variables of FGA are
crisp real number, the initialization step of FGA is same as that of a normal GA.

Genetic operators - Mutation & Crossover:

Mutation and Crossover operators are used to mix genetic materials, called schema, to build
new schema/genetic material and hence drive the evolution. Genetic operators tweak the
chromosome sequence of selected parents to produce child chromosomes. Since chromosomes
are strings of crisp decision variables, crossover operations(like one point Cx, multi point Cx,
hereditary Cx etc) and mutations operations(like polynomial mutation, normally distributed
mutation) in FGA works in the same way as in normal GA.

Fuzzy Ranking:
Rank is a measure of goodness of a solution. The combined population is ranked, following
either the Goldberg [21] or the Fonseca [22] approach. In the former, the non-dominated
members of the population are taken out of the population as rank 1. The truncated population
is again checked for dominance and the non-dominated set is once again removed out of it, this
time as rank 2 members, and the procedure continues. In the Fonseca [22] strategy the entire
population is checked for dominance and the ranks to the individuals are assigned using the
formula:

Ri=1+ Ny
Where Riis the rank of the individual i, and Ndis the number of individuals that dominate it. In
this study The Fonseca approach was preferred as it reduces the computational burden.

A objective vector (Q) = (f:i=1, 2,...., 1)

Then the condition for dominance between any two objective vectors can be taken as:
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5.3.5

5.3.6

(Q! _<Qm)<:>(vi)(ﬁf SJ[fm)/\(zlm )(fi/ £ im)

In other words, if one particular solution is at least as good, or better in terms of all the
objective functions, when compared to another solution, and definitely better in terms of at
least one objective function, it is considered to be a weakly dominating solution. Where fuzzy
comparisons are made using Graded Mean Integration (GMI)

Graded Mean Integration

GMI is a method of comparing two fuzzy numbers. We compare the numbers based on their
defuzzified values. The number with higher defuzzified value is larger. The general formula for
Graded Mean Integration is given by:

L'(h) + R"(h)

P(A) = ( j’o‘” h( ydh)/ jﬁ‘“ hdh.

Where L(h) and R(h) are the left and right shape functions, respectively and w, is the maximum
value attained by L(h) and R(h) whereas the minimum value is zero. For a trapezoidal fuzzy
number A = (a,b,a,B) it reduces to P(A)=(3a+3b+B-a)/6

Advanced concepts:
Due to the inherent beauty of problem formulation, the advances concepts of a GA remain valid
for a FGA as well. Concepts pertaining to the variable space like Nadir point initialization,
normalized random population etc can be directly borrowed from GA. The concepts pertaining
to decision space/objective space like Crowding, rank based sizing etc also remains valid after
proper fuzzy adaptation.

26



Chapter 6
Test functions for FGA

6.1 FZDT

FZDT test functions are fuzzy adaptations of ZDT test functions [4] that provide a check to the
convergence and scalability of a FGA for above mentioned parameters.

These functions have two objectives that need to be minimized:

Minimize fy(X),
Minimize f,(X) = g(X) * h (f1(X), g(X))

Underlined 5 problems have their Pareto-optimal font when g(X) reaches unity. Although f; is a
single variable function, the difficulty of the functions can be enhanced by using a multivariate
f1 function.

Table 6.1: FZDT test functions.

Function | Decision Objective Function Optimal solution
Space
FZDT1 X €10,17%° £(X) = Ty, 0 <x¢*< 1 andx* =0 fori=2,3,...,30
s
h(fi,g) = 1 -V (fi(X) / g(X) )
i a a4

g(X)=1+9*( =2 1 *x)/(n-1)

n=30 This is a problem having a convex
Pareto-optimal set.

FZDT2 | X €011 | x) = T%x, 0<x/*<1and x*=0fori=23,...,30

h(fg) = 1 - (£:(X) / (X))

(0% 3“1 %
g(X)=1+9 *(=~img [ *x;)/(n-1) This is a problem having a non-

n=30 convex Pareto-optimal set.

FZDT3 | X€]0,17° £,X) =,1\/*x1 0<x™*¢<land x* =0 fori=2,3,.30

a4
hfi.g) = 1 -N(fi(X) / g(X) ) -
sin(10*70*6)* £,(X) /g(X)
o(X) _Tiogx ( 3y ,l\:kxi Y(n-1) This is a 30 variable problem and has
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n=30

a humber of disconnected Pareto-
optimal fronts.

FZDT4 X€ £,(X) = Ty 0 <x*< 1 andx* =0 fori=23,...,10
[0,11x[-5,57" | "
h(fi,g) = 1 -V(H(X) / g(X))
(O SR V4 31;,‘ - 9% 2
g(X)=1+10%*(n-1) + {=im2 (1*x;"—
9%
n=10 10¥cos(4*1*xi) ) } This is a 10 variable problem with a
convex Pareto-optimal set.
FZDT6 | X €[0,11° | fx) = T¥x - exp(-4*x))*sin’@*m*x1) | 0™ land x* =0 for i=23,...,10
[
h(fi,g) =1 - (fi(X)/ g(X) )’
NV e TR % 025 This is a 10-variable problem having a
g =1+9*{(=" 17x)/(n-1) } non-convex Pareto-optimal set. Here
the density of solutions across the
Pareto-optimal region is non-uniform
n=10

and the density towards the Pareto-
optimal front is also thin.

All the coefficients of the decision variables can be seen as normalized fuzzy input parameters

taking part ir)vthe optimization process. Proper care must be taken about the lower and the

upper bound of terns like (1*x;). The entire spread of such parameters must lie within the search

space.

For example: In FZDT1 the entire spread of (1*x;) must lie within [0, 1].
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Chapter 7
Experimentation and Results

Based on the FGA framework discussed above, two real coded algorithms are developed:
FMSGA and FNSGA. These algorithms are fuzzy adaptations of two very effective GAs: NSGA [7a]
& NMGA [7b].

7.1 FNMGA

7.1.1

7.1.2

7.1.3

Discretization of the functional space

In this algorithm a traditional Genetic Algorithm population is mapped on to the functional
space. Each member is assigned to a discrete grid in the function space. For a system of |
objective functions, the index of the grid can be designated through an integer coordinate
system (g1 8,, ...8i), related to the corresponding objective functions as:

? 1(L)’

(n?
L,
Where, ‘ denotes defuzzified values, the subscripts indicate the lower and upper bounds of the
function and n denotes the total number of grids that the user needs to specify. A particular grid
location, in principle, can be inhabited by more than one members of the population, provided
they have got identical indices.

The neighborhood and the recombination process

Once the entire population is mapped on to the functional space, a Moore neighborhood [19-
20] is assigned to each of them. Genetic recombination is conducted in the neighborhood by
crossing over the central member C with a random partner picked up from the Moore
neighborhood. In case no solutions other than C were present in the original neighborhood, it
was further expanded by adding some more layers of grids, but retaining the original symmetry,
till at least, one more member was encountered. The children are also placed in the functional
space, and subsequently, a pruning of the population takes place.

Ranking the population
Once the genetic recombination and mutation gets over, all the dominated individuals in the
neighborhood are deleted. The resulting population is then ranked, following Fonseca [22]

29



7.1.4

approach. In the Fonseca strategy the entire population is checked for dominance by fuzzy
comparison using GMI approach as discussed in section 3.2.4 &3.2.5 and the ranks to the
individuals are assigned using the formula:

Ri=1 +Ny

Where R;is the rank of the individual i, and Ny is the number of individuals that dominate it.

Rank based population sizing

The main idea behind this population sizing procedure is to ensure that all types of members are
present in the final set of size that the member specifies. Initially all the individuals are ranked
using the Fonseca and Fleming strategy and the permitted number of individuals in the final set
is computed by the function: S

Ng = Np *e ™
Here, N; denotes the permitted number of individuals of rank R, Ny is a constant calculated
using the value of S. There is no upper limit on the value of rank and so, in principle, we can
assume that the maximum rank is infinity while the lowest, by definition, is unity. The
individuals having the rank of ‘1’ constitute the Pareto-front. The total set should be equal to
the sum of the permitted number of individuals of all ranks, such that

S:N1+N2+N3+ ...... Noo

Substituting the values of Ny, N,, N3 ...... N..into the above equation, the final equation becomes
S=Ng* (e-1+e-2+..+e-o0)
Summing the infinite series in geometric progression, the value of is calculated as

No =S * (e-1)
However, by doing so, the value N, of will be less than 1 for the ranks above In(Ng). Such
individuals will have no representation in the main population even though some space might
be still available. In order to accommodate them the original function has been slightly modified
and is taken as:

B Jmax[NO xe‘R,l] if iN] <8
] i=1

.=
l 0 otherwise

The next generation starts with the down sized population. The basic steps of this algorithm are
shown schematically in Figure 3.
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7.1.5 Results
Matlab (7.6.0 R2008a) package for FNMGA algorithm was developed and above algorithm was
tested on Windows XP platform. FNMGA was found to be consistent with the FZDT functions.
Area between solid blue lines denotes the entire spread of the Pareto font. The defuzzified value
of the Pareto front (red line) was found to resemble the characteristics of the Pareto font of the
corresponding ZDT functions.
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7.2

FZDTS5 applicable only in the case of binary coded fuzzy genetic algorithm

Population size = 500
=5%

No. of generations = 300
Input parameters Spread

0 0.z 0.4 0.6 0.5 1 1.2
fl

FNSGA II

FNSGA Il is a fuzzy adaptation of NSGA Il algorithm. The initialized population is sorted based on
non-domination into each front. The first front being completely non-dominant set in the
current population and the second front being dominated by the individuals in the first front
only and the front goes so on. Each individual in the each front are assigned rank (fitness) values
or based on front in which they belong to. Individuals in first front are given a fitness value of 1
and individuals in second are assigned fitness value as 2 and so on. In addition to fitness value a
new parameter called crowding distance is calculated for each individual. The crowding distance
is a measure of how close an individual is to its neighbors. Large average crowding distance will
result in better diversity in the population. Parents are selected from the population by using
binary tournament selection based on the rank and crowding distance. An individual is selected
in the rank is lesser than the other or if crowding distance is greater than the other 1. The
selected population generates offspring from crossover and mutation operators. The population
with the current population and current offspring is sorted again based on non-domination and
only the best N individuals are selected, where N is the population size. The selection is based
on rank and the on crowding distance on the last front.
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7.2.1 Population Initialization
The population of real variables is initialized based on the problem range and constraints if any.

7.2.2 Non-Dominated sort

The initialized population is sorted based on non-domination by fuzzy comparisons using GMI
approach (discussed in section 1.8). An individual is said to dominate another if the objective
functions of it is no worse than the other and at least in one of its objective functions it is better
than the other. The fast sort algorithm [16] is described as below for each
» for each individual p in main population P do the following
Initialize S, = @. This set would contain all the individuals that are being dominated by p.
Initialize n, = 0. This would be the number of individuals that dominate p.
for each individual g in P
- if pdominated g then add g to the set S,i.e. S, =S, U {q}
- elseif g dominates p then increment the domination counter for p ( n, = n, +1)
If n, = 0 i.e. no individuals dominate p then p belongs to the first front; Set rank of individual
p to one i.e prank = 1. Update the first front set by adding p to front onei.e F; = F, U {p}
This is carried out for all the individuals in main population P.

» Initialize the front counter toone.i=1
» Following is carried out while the i" front is nonemptyi.e. F;# @
e Q-=@.The set for storing the individuals for (i + 1)" front.
e for each individual p in front F;
- for each individual g in Sp (Sp is the set of individuals dominated by p)
ng = n,il, decrement the domination count for individual g.
if n, = 0 then none of the individuals in the subsequent fronts would
dominate g. Hence set g, = i + 1. Update the set Q with individual g
i.e.Q=QU({q}
- Increment the front counter by one.
- Now the set Qis the next front and hence F; = Q.
This algorithm is better than the original NSGA ([5]) since it utilize the information about the set
that an individual dominate (S,) and number of individuals that dominate the individual (n,).

7.2.3 Crowding Distance
Once the non-dominated sort is complete the crowding distance is assigned. Since the
individuals are selected based on rank and crowding distance all the individuals in the
population are assigned a crowding distance value. Crowding distance is assigned front wise and
comparing the crowding distance between two individuals in different front is meaning less. The
crowing distance is calculated as below

» For each front F;, n is the number of individuals.
e Initialize the distance to be zero for all the individuals i.e. Fi(d;) = 0,
where j corresponds to the jth individual in front F;.
e for each objective function m
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7.2.4

7.2.5

- Sort(using GMI approach) the individuals in front F; based on objective m i.e. |
=sort(Fj;m)

- Assign infinite distance to boundary values for each individual in Fji.e. I(d;) =
and I(d,) =©°

- fork=2to(n-1)

I(dy) = I(dy) + Ik+1)m—I(k—1).m

fma;L' 2 fmz'n
m Jdm

- I(k).mis the value of the mt" objective function of the k™ individual in |

The basic idea behind the crowing distance is finding the Euclidian distance between each
individual in a front based on their m objectives in the m dimensional hyper space. The
individuals in the boundary are always selected since they have infinite distance assignment.

Selection
Once the individuals are sorted based on non-domination and with crowding distance assigned,
the selection is carried out using a crowded-comparison-operator (<,). The comparison is
carried out as below based on
(1) Non-domination rank prank i.e. individuals in front F; will have their rank as prank = i.
(2) Crowding distance F;(d))
o p<pyqif
Prank < Qrank
- orif p and g belong to the same front F; then Fi(d,) > Fi(dg) i.e. the
crowding distance should be more.

The individuals are selected by using a binary tournament selection with crowed comparison
operator.

Genetic Operators

Real-coded GA's use Simulated Binary Crossover (SBX) [15], [14] operator for crossover and
polynomial mutation [15], [17].

ik ==[(1 = Br)pie + (1 + Br)p2.k)

cor ==[(1+ Br)p1k + (1 — Br)p2,i]

b = b

7.2.5.1 Simulated Binary Crossover

Simulated binary crossover simulates the binary crossover observed in nature and is give as
below.

where ¢ is the i child with k™ component, pik is the selected parent and B (= 0) is a sample
from a random number generated having the density
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B(u) =(2u) @D
1

21 — w)] &

Bu) =

This distribution can be obtained from a uniformly sampled random number U between (0, 1).
Ne (This determine how well spread the children will be from their parents) is the distribution
index for crossover. That is

7.2.5.2 Polynomial Mutation

7.2.6

7.2.7

ek = pr + (P} — pk)d

Where c is the child and pg is the parent with p}(‘ being the upper bound on the parent

component, p,lc is the lower bound and &y is small variation which is calculated from a
polynomial distribution by using

1
S =(2rp)Mm T 1 1 ifr, <05

1
Sk =1—[21—r)]Mm*+1 ifr;, > 05

re is an uniformly sampled random number between (0; 1) and n, is mutation distribution index.

Recombination and Selection

The offspring population is combined with the current generation population and selection is
performed to set the individuals of the next generation. Since all the previous and current best
individuals are added in the population, elitism is ensured. Population is now sorted based on
non-domination. The new generation is filled by each front subsequently until the population
size exceeds the current population size. If by adding all the individuals in front F; the population
exceeds N then individuals in font F; are selected based on their crowding distance in the
descending order until the population size is N. And hence the process repeats to generate the
subsequent generations.

Results

A package in for FNSGA Il algorithm was developed and above algorithm was tested on Linux
platform (Debian). FNSGA Il was found to be consistent with the FZDT functions. Area between
solid blue lines denotes the entire spread of the Pareto font. The defuzzified value of the Pareto
front (red line) was found to resemble the characteristics of the Pareto font of the
corresponding ZDT functions.
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FZDTS5 applicable only in the case of binary coded fuzzy genetic algorithm
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Population size = 500
=5%

No. of generations = 300
Input parameters Spread

7.3 A comparative study of the two FGA: FNMGA & FNSGA 11

A study of the results of the two algorithms was done. For the same no. of generation and same

population size FNMGA and FNSGA |l show variability in convergence and distribution. FNMGA I

gives better convergence but the distribution of individuals across the pareto front is not

uniform. FNSGA on the other hand falls behind in convergence but display an excellence

distribution of individuals across the entire frontier

ZDT Functions

FZDT results on NMGA

FZDT results on NSGA 11
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Chapter 8
Conclusion

The FZDT results obtained from the two FGAs are in direct coherence with that of ZDT functions
working in real environment. Fuzzy Genetic algorithm successfully maintained the shape and
range of the frontier for all FZDT functions. The defuzzified values (GMI) of the elite members
exactly copied the shape and range of the frontier for each of the ZDT functions for real
environment. Therefore it can be concluded that the Fuzzy genetic algorithm very well captures
the essence of multi objective optimization in fuzzy domain. And the proposed Fuzzy ZDT (FZDT)
test functions can act as a benchmark for testing fuzzy genetic algorithms.
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