
Control-Limited Differential Dynamic Programming
Paper-ID [148]

Abstract—We describe a generalization of the Differential
Dynamic Programming trajectory optimization algorithm which
accommodates box inequality constraints on the controls, without
significantly sacrificing convergence quality or computational
effort. To this effect we describe an efficient Quadratic Pro-
gramming sub-algorithm which benefits from warm starts and
provides explicit Hessian factors. We demonstrate our algorithm
on three simulated problems, including a 28-DoF grasping
problem. Simple cost terms were sufficient to generate highly
dexterous and agile grasping behaviors. A movie of the grasping
results can be found here goo.gl/GlM8h

I. INTRODUCTION

Constraints on the control signal applied to an actuator
are invariably present in robotic systems. Signal clamping
alleviates the danger of frying one’s robot by exceeding
voltage limits, but will not help in finding the best signal given
those limits.

Optimal control algorithms render such control constraints
as inequality-constrained optimization problems, which are
always harder than unconstrained ones. Classic Differential
Dynamic Programming (DDP) – a trajectory-optimizer –
is efficient precisely because it parameterizes unconstrained
controls. Below we describe a generalization of DDP which
accommodates box inequality constraints on the controls,
without significantly sacrificing convergence quality or com-
putational effort.

In section II we provide background on DDP and box
constraints. In III we motivate and describe our proposed
algorithm. In IV we describe experimental results obtained
in simulation.

II. BACKGROUND

Trajectory optimization is the process of finding a state-
control sequence which locally minimizes a given cost func-
tion. Shooting methods – which trace their ancestry to the
two-point boundary-value problem of the venerable Maximum
Principle [1] – are an important sub-class of trajectory op-
timization methods. Unlike so-called direct methods which
explicitly represent the state, these methods parameterize only
the controls, and obtain the states from forward integration
(hence “shooting”). Given the state-control trajectory, Dy-
namic Programming is used to find an improved control
sequence. Because states are never explicitly represented in
the optimization space, these methods are also known as
indirect [2].

Because the dynamics are folded into the optimization,
state-control trajectories are always feasible and “dynamic
constraints” unnecessary. If additionally the controls are un-
constrained, so is the optimization search-space, and shooting
methods can enjoy the benefits of unconstrained optimization.

DDP is a second-order shooting method [3] which under
mild assumptions admits quadratic convergence for any system
with smooth dynamics [4]. It has been shown to posses con-
vergence properties similar to or slightly better than Newton’s
method performed on the entire control sequence [5].

Classic DDP requires second order derivatives of the dy-
namics, which are usually the most expensive part of the
computation. If these are ignored one obtains a Gauss-Newton
approximation known as iterative-LQG [6], which is similar
to Riccati iterations, but accounting for the regularization and
line-search required to handle the nonlinearity. See section II-B
below.

Control constraints can be naively imposed by applying a
sigmoidal squashing function, and also by simple clamping.
A more principled approach is to solve a Quadratic Program
(QP). In the following we compare these three approaches and
demonstrate that the last approach is superior.

A. Shooting methods

The discrete-time1 dynamics

xi+1 = f(xi,ui) (1)

describe the evolution from time i to i+1 of the state x∈Rn,
given the control u∈Rm. A trajectory is a sequence of states
X ≡ {x0,x1 . . . ,xN} and controls U ≡ {u0,u1 . . . ,uN−1}.
The total cost J0 is the sum of running costs ` and final cost
`f , incurred when starting from x0 and applying U until the
horizon N is reached:

J0(x0,U) =
N−1

∑
i=0

`(xi,ui) + `f(xN),

where the xi for i > 0 are given by (1). The solution of the
optimal control problem is the minimizing control sequence

U∗ ≡ argmin
U

J0(x0,U).

Letting Ui ≡ {ui,ui+1 . . . ,uN−1} be the tail of the control
sequence, we define the cost-to-go Ji as the partial sum of
costs from i to N :

Ji(xi,Ui) =
N−1

∑
j=i

`(xj ,uj) + `f(xN).

The Value at time i is the optimal cost-to-go starting at x:

V (x, i) ≡ min
Ui

Ji(x,Ui).

Setting V (x,N) ≡ `f(xN), the Dynamic Programming Prin-
ciple reduces the minimization over a sequence of controls

1We restrict ourselves to the discrete, but the continuous-time limit is
straightforward.

https://dl.dropbox.com/u/56715/boxDDPgrasping.mp4


Ui, to a sequence of minimizations over a single control,
proceeding backwards in time:

V (x, i) = min
u

[`(x,u) + V (f(x,u), i+1)] (2)

Shooting methods involve iterating a forward pass or rollout
which integrates (1), followed by a backward pass which
approximates a local solution to (2).

B. Differential Dynamic Programming

Let Q(δx, δu) be the change in the argument of the
minimum in (2) as a function of small perturbations of the
i-th nominal (x,u) pair:

Q(δx, δu) = `(x + δx,u + δu, i) − `(x,u, i)
+ V (f(x + δx,u + δu), i+1) − V (f(x,u), i+1) (3)

and expand to second order

≈ 1

2

⎡⎢⎢⎢⎢⎢⎣

1
δx
δu

⎤⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎣

0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
δx
δu

⎤⎥⎥⎥⎥⎥⎦
(4)

The Q-function is the discrete-time analogue of the Hamil-
tonian and is sometimes known as the pseudo-Hamiltonian.
Examining (3) we see that the expansion coefficients are2

Qx = `x +fT
x V

′
x (5a)

Qu = `u +fT
uV

′
x (5b)

Qxx = `xx+fT
x V

′
xxfx + V ′

x ⋅ fxx (5c)

Quu = `uu+fT
uV

′
xxfu + V ′

x ⋅ fuu (5d)

Qux = `ux+fT
uV

′
xxfx + V ′

x ⋅ fux. (5e)

Minimizing (4) WRT δu we obtain

δu∗ = argmin
δu

Q(δx, δu) = −Q−1
uu(Qu +Quxδx), (6)

giving us a locally-linear feedback policy of the form

δu∗(δx) = l +L ⋅ δx (7)

with l ∈ Rm the open-loop modification and L ∈ Rm×n the
feedback gain. To ensure positive-definiteness, regularization
is added

minimize
δu

Q(δx, δu) + µ ∥δu∥
2

2
, (8)

amounting to a Levenberg-Marquardt Hessian modification
Q̃uu = Quu + µ ⋅ Im. The open-loop and feedback terms are

l = −Q̃−1
uu ⋅Qu (9a)

L = −Q̃−1
uu ⋅Qux, (9b)

Plugging the policy (7, 9) back into (4), we obtain a quadratic
model of V (i):

∆V (i) = + 1
2
lTQuul+lTQu (10a)

Vx(i) = Qx +LTQuul +LTQu +QT
uxl (10b)

Vxx(i) = Qxx+LTQuuL+LTQux+QT
uxL. (10c)

2Here and elsewhere in the paper we drop the index i and use primes to
denote the next time-step V ′ ≡ V (i+1).

The backward pass is initialized with the final cost at xN

V (N) = `f(xN) (11a)
Vx(N) = `fx(xN) (11b)
Vxx(N) = `fxx(xN), (11c)

and then recursively computes the linear controllers (9) and
the quadratic expansion (10). Once it is completed, a forward
pass computes a new trajectory:

x̂0 = x0 (12a)
ûi = ui + αli +Li(x̂i − xi) (12b)

x̂i+1 = f(x̂i, ûi), (12c)

where α is a line search parameter (see below).
The last terms in (5c, 5d, 5e), denote contraction with a

tensor which scales cubically with the dimension and is often
expensive to represent and compute. Ignoring these terms
amounts to a Gauss-Newton approximation of the Hessian, and
is known as iterative Linear Quadratic Gaussian or iterative-
LQG optimization [6]. Though some of the convergence speed
is lost, the speedup gain from discarding the cubic terms often
more than compensates.

In addition to using only first derivatives, iterative-LQG
includes several small improvements to classic DDP with
regards to the Value update (10), the schedule of µ in (8),
alternative regularization, and better improvement prediction
using (10a). Details are provided in [7].

Algorithm I U∗ ←Ð ILQG(f , `, `f ,x0,U)
Integrate U to get the initial (xi,ui) trajectory.
Repeat until convergence:

1) Derivatives: Compute the derivatives of ` and f in (5).

2) Backward Pass: Initialize with (11). Iterate (5, 9, 10) for
decreasing i = N −1, . . .0. If Q̃uu is non-PD, increase µ
and restart the backward pass. If successful, decrease µ.

3) Convergence: If a termination condition is met, return U.

4) Forward Pass: Set α = 1. Iterate (12) to get a new nom-
inal sequence. If the cost was sufficiently reduced, accept
(x̂i, ûi), otherwise decrease α and restart the forward pass.

C. Box Constraints

Rather than treat general inequality constraints we will focus
on the box

¯
b ⩽ u ⩽ b̄

with elementwise inequality and
¯
b, b̄ the respective lower

and upper bounds. Besides lending itself to our proposed
solution, the box constraint accurately describes nearly any
set of standard mechanical actuators.

One can consider several methods for imposing such control
constraints. Below we outline two such methods, which are
easy-to-implement heuristics but not do not work so well. In
the following section we develop a more principled method
which is the main contribution of this paper.



1) Naı̈ve Clamping: A first attempt to enforce box con-
straints is to clamp the controls in the forward-pass. Letting
double square brackets ⟦⋅⟧b denote the element-wise clamping,
or projection operator

⟦u⟧b = min(max(u,
¯
b), b̄),

the forward-pass is modified by replacing (12b) with

ûi = ⟦ui + αli +Li(x̂i − xi)⟧b. (13)

When attempted as such, this approach fails. Since the back-
pass is ignorant of the constraints, it repeatedly tries to
violate them and eventually generates control steps which are
not legitimate descent directions. Post-hoc clamping can be
introduced to the control modification l in (9a)

l ← ⟦l + u⟧b − u,

but this does not help much. It might also seem sensible that
the rows of L corresponding to clamped controls should be set
to 0, since the feedback is inactive in these dimensions. All
this feels correct, it is not well-motivated, and besides does
not significantly improve convergence.

2) Squashing Functions: Another way to enforce box con-
straints is to introduce a sigmoidal squashing function s(u)
in the dynamics

xi+1 = f(xi, s(ui)) (14)

where s() is an elementwise sigmoid with the vector limits

lim
u→−∞

s(u) =
¯
b lim

u→∞
s(u) = b̄. (15)

For example

s(u) = b̄ −
¯
b

2
tanh(u) + b̄ +

¯
b

2
(16)

is such a function. If the control-cost term remains a function
of the original u, that amounts to changing the problem to be
solved. If the input to the control-cost term is also the squashed
s(u), the control problem remains the same, but u will tend
to ±∞. One way to prevent this is to have control cost terms
for both u and s(u), see section IV-B. While this trick works
in the sense that the optimizer does not get stuck, it does not
mitigate the sigmoidal non-linearity. Since the backward pass
uses a locally linear approximation of the dynamics (quadratic
in the case of full DDP), significant higher order terms always
have a detrimental effect on convergence.

III. PROPOSED ALGORITHM

The Quadratic Program (QP) is a well understood problem
with many methods of solution [8] which together form
the backbone of the Sequential-QP approach to nonlinear
optimization. However, the problem at hand is different from
generic QPs in two important respects.

First, because we are solving the problem sequentially
(backwards) in time, the current solution will often be similar
to the subsequent one. We would therefore prefer an algorithm
that can enjoy warm starts.

Second, the problem we wish to solve is small. The problem
size m corresponds to the number of actuators and in reality
does not exceeds several dozen, except for very specialized
robots. Although DDP searches in the space of control tra-
jectories U ∈ Rm×N , we solve the m-dimensional problem
N times, not a single problem of size mN . The difference is
made stark when considering N Hessians of size m×m rather
than a large Nm×Nm matrix, as in the direct representation.
Since factorization complexity is cubic in the dimension, the
respective complexities are O(Nm3) and O(N3m3).

The warm-start requirement rules out some classes of
algorithms, for example interior-point methods. Since these
methods glide smoothly to the solution from the interior,
they do not benefit from being initialized at the boundary.
Active-set methods do traverse the boundary and can be warm-
started, but need to explicitly account for constraint activation,
separately for each constraint.

The Projected-Newton class of algorithms were developed
for problems with simple constraints, where the projection
operator is trivial – like clamping in the case of the box. Their
key feature is the projected line-search, whereby the search-
point is continuously clamped, allowing multiple constraints
to form and break in each iteration. In [9], Bertsekas analyses
these methods and proves convergence for a large class of
approximate Hessians. In the following we describe a special
case thereof, which uses the exact Hessian at all times. Its key
feature, which we prove below, is that if the initial point has
the same active constraint set as the optimum, the solution
will be reached in a single iteration.

A. Box-Constrained Quadratic Programs

We wish to solve the constrained version of Eq. (8):

minimize
δu

Q(δx, δu) + µ ∥δu∥
2

2
(17a)

subject to
¯
b ⩽ u + δu ⩽ b̄ (17b)

In generic3 form, for x ∈ Rn and a positive-definite Hessian
H ≻ 0, the box-constrained QP is

minimize
x

f(x) = xTq + 1
2
xTHx (18a)

subject to
¯
b ⩽ x ⩽ b̄ (18b)

B. Projected-Newton Solution

The algorithm proceeds by iteratively identifying the active
constraints, and then performing a projected Newton step
using the reduced Hessian in the free sub-space. Begin at
some feasible initial guess x = ⟦x⟧b and define the gradient
g = ∇xf = q +Hx. The complimentary sets of clamped and
free indices c and f are

c(x) =
⎧⎪⎪⎨⎪⎪⎩
j ∈ 1 . . . n

RRRRRRRRRRR

xj =
¯
bj , gj > 0

or
xj = b̄j , gj < 0

⎫⎪⎪⎬⎪⎪⎭
(19a)

f(x) = {j ∈ 1 . . . n ∣ j ∉ c} (19b)

3In section III we use x to denote a generic variable rather than the state.



Note that indices are clamped only when the descent direction
at the boundary points outward. Repartitioning the problem4

x← [xf

xc
] , q← [qf

qc
] , H← [Hff Hfc

Hcf Hcc
] ,

the gradient in the free subspace is

gf = ∇xf
f = qf +Hffxf +Hfcxc, (20a)

and the Newton step in the free subspace is

∆xf = −H−1
ff gf = −H−1

ff (qf +Hfcxc) − xf . (20b)

The full step is therefore

∆x = [∆xf

0c
] . (20c)

The projected Newton candidate point x̂ for a line-search
parameter α is

x̂(α) = ⟦x + α∆x⟧b. (21a)

A backtracking line-search reduces α until the Armijo condi-
tion [10] is satisfied

f(x) − f(x̂(α))
gT(x − x̂(α))

> γ (21b)

with 0 < γ < 1
2

the minimally acceptable reduction ratio5.

Algorithm II x∗ ←Ð QP[H, q, b, b̄, x]
Repeat until convergence:

1) Get indices: Equations (19).

2) Get Newton step: Equations (20).

3) Convergence: If ∥gf∥ < ε≪ 1, terminate.

4) Line search: Decrease α in (21a) until (21b) is satisfied.
Accept the candidate x← x̂(α).

By design, the key feature of the algorithm is the following:

Lemma. If the initial point x has the same clamped con-
straints as the optimum c(x) = c(x∗), then the solution will
be reached in a single iteration.

Proof: Setting ∆xf = 0 at the optimum, we have from
(20b) that x∗f = −H−1

ff (qf +Hfcxc). If c(x) = c(x∗) then
xc = x∗c and therefore ∆xf = x∗f − xf taking us directly to
the minimum in one step.

C. BOX-DDP/ILQG

Using the notation of Algorithm II, the solution of (17) for
δx = 0 is given by

lf = QP[Q̃uu, Qu,
¯
b − u, b̄ − u, l′]. (22a)

Note that we warm-start the solver with the solution at the
subsequent time-step l′. The subscript notation lf indicates

4It is not strictly necessary to sort the indices {f, c} when repartitioning.
We do so here to enhance readability.

5We use the oft-quoted γ = 0.1.

that only the free dimensions are non-zero. Unlike in the
naive clamping of Sec. II-C1, here the correct formula for the
feedback gains emerges naturally. The solution of (17) with a
non-zero δx remains linear in δx in the free subspace, leading
to the gains

Lf = Q̃−1
uu,ff ⋅Qux,f (22b)

Here Q̃uu,ff is the reduced Hessian which had already been
factorized in (20b), and Lf and Qux,f are “compressed” by
ignoring the rows corresponding to the clamped subspace c.
It follows that Lc, the rows of L corresponding to clamped
controls, are identically zero.

To summarize, the box-constrained iterative-LQG algorithm
replaces (9a) and (9b) with (22a) and (22b) in the backward-
pass, and replaces (12b) with (13) in the forward-pass.

D. Complexity

In problems with elaborate dynamics, the effort required to
compute the derivatives (5) is often significantly larger than
that required for the backward-pass. In that case the extra effort
required by the box-QP solver will go unnoticed. If however
we ignore the time required for the derivatives, or make it very
small by computing them in parallel, the leading complexity
term comes from the Cholesky factorization in (20b), which
is O(m3). Since standard DDP requires one factorization
anyway in (9), the question is how many extra factorizations
on average, does the box-QP solution impose. The algorithm
performs a factorization whenever c(x) changes, which might
not be often, depending on the problem. As reported below,
in our experiments the average number of factorization was
never larger than 2.

IV. RESULTS

A. Linear-Quadratic problems

0 200

st
at

e 
 
x

 

 
optimal

 u = 0

0 200

−1

1

co
n
tr

o
l 

 
u

time

Fig. 1. A typical optimal trajectory of a random linear system. Here h = 0.01,
n = 20, m = 7 and N = 200. Top: the state trajectory X ≡ {x0 . . .x200},
the passive dynamics (u = 0) are shown in gray. Bottom: the control tape
U ≡ {u0 . . .u199}. The limits b = −1 and b̄ = 1 are indicated.



0 5 10 15 20
10

−6

10
−4

10
−2

10
0

10
2

iterations

box−QP

 

 

∆V

µ

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

10
2

iterations

naive clamping

 

 

∆V

µ

Fig. 2. Left:, convergence trace of random LQ problems using the naı̈ve
clamping heuristic described in section II-C. The regularization parameter
µ never vanishes, and full convergence (∆V = 0) is not achieved in the
20 iterations shown. Right: Convergence trace using the proposed algorithm.
Note how the solution requires no regularization (µ = 0), and clearly displays
quadratic convergence traces.

The finite-horizon Linear-Quadratic (LQ) optimal control
problem is solved by exactly one iteration of DDP with µ = 0
(no regularization). It is described by linear dynamics

xi+1 = Aixi +Biui. (23a)

and the quadratic optimization criterion

minimize
u0,u1,...uN−1

1
2
xT
NQfxN + 1

2

N−1

∑
i=0

(xT
i Qixi + uT

i Riui) .

(23b)

Box-constrained LQ problems are the natural first test-case for
our algorithm. We generated random LQ problems as follows.
The state dimension n was drawn uniformly from {10 . . .100}.
The control dimension m was drawn from {1 . . . ⌊n

2
⌋}. The

matrices A,B,Q,R were all time independent. For a time-
step h the random dynamics matrices were A = In+hN(n,n)
and B = hN(n,m), where N is a matrix with standard nor-
mally distributed elements Nij ∼ N (0; 1), and I is the identity.
The cost matrices were Q = Qf = hIn and R = cuhIm with cu
the control-cost coefficient. Control bounds were

¯
b = −1 and

b̄ = 1. The initial state was drawn from the normal distribution
x0 = N(n,1).

Figure 1 shows a typical state-control trajectory. Figure 2
shows a comparison between the naı̈ve clamping heuristic
described in section II-C, and the proposed algorithm. The
box-QP solution shows quadratic convergence and requires
no regularization. Quadratic convergence, which amounts to
convergence like Newton’s method means the doubling of
correct significant bits in the solution with each iteration.
This manifests as quadratic-looking traces on a log-plot of the
convergence trace, as seen evidenced in Figure 2. The average
number of factorizations per iteration was 1.5.

B. Car Parking

Next, we tested our algorithm on a planar car-parking
problem. Here one of the control variables – the angle of the
front wheels – was kinematic, rather than dynamic variable.

When controls specify kinematic variables, bounds often arise
naturally from the geometry of the problem rather than from
actuator limits. This makes kinematic problems an important
class for our proposed algorithm.

(x, y, θ, v) is the 4-dimensional state. x, y is the position
of the point midway between the back wheels. θ is the angle
of the car relative to the x-axis. v is the velocity of the front
wheels. The two control signals are ω the wheel angle and a
the acceleration.

For Euler dynamics with a time-step h and letting d denote
the distance between the front and back axles, the rolling
distance of the front and back wheels are respectively

f = hv (24a)

b = f cos(ω) + d −
√
d2 − f2 sin2(ω), (24b)

and the h-step dynamics are

x′ = x + b cos(θ) (24c)
y′ = y + b sin(θ) (24d)

θ′ = θ + sin−1(sin(ω)f
d
) (24e)

v′ = v + ha. (24f)

The “parking” task was encoded as a final-cost on the distance
of the last state from (0,0,0,0), i.e. at the plane’s origin, facing
east and motionless. Distance was measured using the Huber-
type function z(x, p) =

√
x2 + p2−p. This function is roughly

quadratic in a p-sized neighborhood of the origin and linear
thereafter. The state cost was

`f(x) = z(x, px) + z(y, py) + z(θ, pθ) + z(v, pv)

We chose px = py = 0.1m, pθ = 0.01rad and pv = 1m/s
to compensate for the relative difficulty of changing each
variable. Because it is easier to stop the car (v = 0) than to
orient it (θ = 0), we would like the optimizer to focus on the
harder task once near enough to the goal-state.

In order to make the task more difficult, we added a running
cost that penalizes cartesian distance from the origin

`(x) = 0.01 × (z(x, px) + z(y, py)).

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

Fig. 3. Two solution trajectories, starting from (1,1, 3π
2
,0) (gray car,

background) and ending at the goal state (foreground). The blue line shows
the trace of the (x, y) coordinates.



0 500
−4

−2

0

2

4

6

state
sq

u
as

h
in

g
 f

u
n
ct

io
n

0 500

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

controls

1 50 100 150 200 250 300 350 400 450 500
10

−8

10
−6

10
−4

10
−2

10
0

convergence trace

0 500
−4

−2

0

2

4

6

timesteps

b
o
x
−

D
D

P

 

 

0 500

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

timesteps

 

 

1 50
10

−8

10
−6

10
−4

10
−2

10
0

iterations

 

 

∆V
α
µ

x
y
θ
v

w
a
Lw

La

Fig. 4. Comparison between squashing-functions (top row) and BOX-DDP (bottom row). Left column: State trajectories (x, y, θ, v)i at the optimum. The
top and bottom trajectories correspond to the left and right ones in figure 3. Middle column: Controls (ω, a) (solid) and feedback gains L (light colors, not
to scale). Note how the rows of the 2 × 4 matrices L vanish whenever the corresponding controls are clamped, in the BOX-DDP solution. Right column:
Convergence of the two algorithms. BOX-DDP converges quadratically after 64 iterations, while the squashing-function solution barely converged by 500.

This term encourages parking maneuvers which do not take
the car far from the origin. The control cost was `(u) = cωω2+
caa

2 with cω = 0.01 and ca = 0.0001. Cost coefficients were
chosen to be small in order to encourage the controller to hit
the bounds bω = ±0.5rad and ba = ±2m/s2.

Figure 3 shows two solution trajectories, starting from
(1,1, 3π

2
,0) and ending at the goal state. Since our optimiza-

tion is local, convergence to different local minima is to be
expected.

1) Squashing Functions: We used the car parking domain
to compare box-DDP to the “squashing” heuristic described
in section II-C. The squashing function (16) is in this case

ω(ω̃) = 0.5 × tanh(ω̃)
a(ã) = 2 × tanh(ã).

In order to prevent the “pre-controls” (ω̃, ã) from diverging,
a small explicit cost on these was added

`(ω̃, ã) = cωω2 + caa2 + 10−6 × (ω̃2 + ã2).

This term is small enough to not significantly modify the
problem, but large enough to pull (ω̃, ã) back towards the
origin when they are too large. The dimension of this problem
is small enough that full DDP can be used, including the
2nd-order terms in (5c, 5d, 5e), allowing for true quadratic
convergence.

C. Grasping

The results of this section can only be fully appreciated by
watching the accompanying movie:

https://dl.dropbox.com/u/56715/boxDDPgrasping.mp4

Grasping is hard. It is a high high dimensional domain with
many dynamics constraints arising from joint limits, contacts
of the fingers with the object, and inter-finger contacts. No
control method has yet approached the dexterity and agility of
the human hand, or the robustness of its control mechanism.

The high-dimensionality allows many different solutions to
a particular grasping problem, but also creates many local
minima. An initial bad grasp will lead to loss of grip and
require a recovery manoeuver.

1) MPC: Our approach to grasping, which to our knowl-
edge is demonstrated here for the first time, is to use Model
Predictive Control (MPC), also known as online trajectory-
optimization. In MPC the current state of the system is mea-
sured, a single iteration of a trajectory-optimization algorithm
is applied (BOX-ILQG in this case), and the initial part of
the resulting policy is applied to the system until the process
can be repeated and the policy updated again. For MPC to
succeed, large updates to the policy must be made in each
step so that the optimizer can “keep-up” with the changing
state. This means that the regularization parameter µ, which
slows the optimizer and makes it “careful” should be kept

https://dl.dropbox.com/u/56715/boxDDPgrasping.mp4


Fig. 5. Two sequences from the accompanying movie. The time between consecutive frames is 150ms. Both sequences show an agile recovery manoeuver.
The top sequence begins with a back-handed fumble of the object, which is then caught and brought into the desired position. In the second sequence the
initial grip on the object is not robust and the object begins to slip. The controller releases the object and re-grips it in mid-flight.

small.
This explains why a problem such as grasping is difficult

for a trajectory optimizer with unbounded controls. Too high a
control-cost and the hand gets stuck in local minima. Too low
a cost and the back-pass encounters non-PD Hessians in Eq.
(6), the regularization factor µ increases, and the optimization
slows down too much. This results in wild, uncontrolled
movements, due to the mismatch between the state and the
policy.

Control limits help by letting us use a small control-cost
within the limits, helping us jump out of local minima,
but avoiding the divergences of large controls. Some of the
divergence can also be attributed to divergence of the forward-
pass due to the linear gains. Because the initial state changes
on every MPC iteration the gains of the previous, possibly
outdated policy can generate large senseless control signals.
BOX-ILQG sets the rows of L to 0 when the limits are hit,
reducing this danger.

2) Hand Model: We are currently in the process of de-
signing, assembling, identifying and controlling a 28-DoF arm
and hand. In this paper we will describe experiments with a
simplified geometric model of this hand. Figure 6 shows a
CAD model of our robot and the simplified model used here.

Along with the free object shown in the movie, out problem
domain has 34 DoF.

The numerical details of the cost function are specific to
our model so we will not

Our cost function was composed of three terms, all us-
ing the Huber-type function described above. The first term
corresponds to a cost on the object position and orientation.
The origin of this term was exposed as a parameter to the
user, letting us move the object around once a grasp was
achieved. The second term penalizes the object’s positional

and rotational velocities. The last cost term, with a small
coefficient penalized the distance of the hand from the object.
This “hint” term is needed for the hand to make initial contact.
Once contact has been achieved, the first two terms dominate.
Note that we used no grasp-specific costs promoting “force
closure” or other supposedly desirable properties. All the
behaviors seen in the movie emerged from these simple costs.

Fig. 6. Left: A full CAD model of our 28-DOF robotic hand. Right: A
simplified model using capsules to simplify contact detection. The kinematic
tree is the same in both models.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion.

REFERENCES

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze,
and E. F. Mishchenko, The mathematical theory of opti-
mal processes. Interscience New York, 1962.

https://dl.dropbox.com/u/56715/boxDDPgrasping.mp4


[2] O. Stryk and R. Bulirsch, “Direct and indirect methods
for trajectory optimization,” Annals of Operations Re-
search, vol. 37, no. 1, pp. 357–373, Dec. 1992.

[3] D. Q. Mayne, “A second-order gradient method of opti-
mizing non-linear discrete time systems,” Int J Control,
vol. 3, p. 85–95, 1966.

[4] D. H. Jacobson and D. Q. Mayne, Differential Dynamic
Programming. Elsevier, 1970.

[5] L. Z. Liao and C. A. Shoemaker, “Advantages of differ-
ential dynamic programming over newton’s method for
discrete-time optimal control problems,” Cornell Univer-
sity, Ithaca, NY, 1992.

[6] E. Todorov and W. Li, “A generalized iterative LQG
method for locally-optimal feedback control of con-
strained nonlinear stochastic systems,” in Proceedings of
the 2005, American Control Conference, 2005., Portland,
OR, USA, 2005, pp. 300–306.

[7] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabi-
lization of complex behaviors through online trajectory
optimization,” in 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2012.

[8] J. Nocedal and S. J. Wright, Numerical optimization.
New York: Springer, 2006.

[9] D. P. Bertsekas, “Projected newton methods for
optimization problems with simple constraints,” SIAM
Journal on Control and Optimization, vol. 20, no. 2,
pp. 221–246, Mar. 1982. [Online]. Available: http:
//epubs.siam.org/doi/abs/10.1137/0320018

[10] L. Armijo, “Minimization of functions having lipschitz
continuous first partial derivatives.” Pacific Journal of
Mathematics, vol. 16, no. 1, pp. 1–3, 1966.

http://epubs.siam.org/doi/abs/10.1137/0320018
http://epubs.siam.org/doi/abs/10.1137/0320018

	Introduction
	Background
	Shooting methods
	Differential Dynamic Programming
	Box Constraints
	Naïve Clamping
	Squashing Functions


	Proposed Algorithm
	Box-Constrained Quadratic Programs
	Projected-Newton Solution
	Box-DDP/iLQG
	Complexity

	Results
	Linear-Quadratic problems
	Car Parking
	Squashing Functions

	Grasping
	MPC
	Hand Model



