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Abstract— High force density, compact form factor and muscle
like compliance properties makes pneumatics actuators quite
desirable for robotic applications. However, the compressibility
of the air not only throttles their bandwidth but also makes them
harder to control. In this work, we leverage online trajectory
optimization techniques to design high performance controllers
for pneumatic actuators of ADROIT manipulation system [1].
These controllers use future predictions to act in anticipation. We
show that the proposed controllers prepares the system ahead of
time in order to achieve better performance and use less controls
while doing so. Hardware results are presented on the pneumatic
actuators of the ADROIT platform. Controller’s robustness is
evaluated using hardware variants.

I. INTRODUCTION

Search for better actuators continues as robotic devices
move from being hard and stiff, to being soft, nimble, agile
and compliant. Substantial improvements are still needed
(spanning safety, form factor, price point etc.) to kick-start the
era of personal robotics. Fluid based actuators have several
desirable properties relevant to the present and upcoming
needs of such devices. They are inexpensive, mechanically
simple with few moving parts and light weight with high force
to weight ratio. Due to their compact form factor and high
force density, they can be mounted directly on the moving
degree of freedom (DoF), eliminating the need of gears and
transmissions. Robustness, low friction and direct mounted
on a DoF makes them ideal for force control applications.

However, the benefits of fluid based actuators have been
overshadowed by the complexity of the control techniques
they require. For applications where the dynamics of the
fluid doesn’t need excitation, deployment of simple linear
controllers have made these devices widely successful. They
are the defacto actuators for industrial automation needs,
commercial heavy weight equipments, load bearing and trans-
mission mechanisms, power tools etc. For applications such
as robotics, where the dynamics of the fluid needs to be
accounted, controller design still remains a challenge. As the
bandwidth of fluid based actuators (specially hydraulics) is
improving, with the advancements in the value technology
(MOOG), they are increasingly being used in the fast dy-
namics applications – Spot, Atlas [2], HyQ quadruped [3],
Cheetah [4].

Bandwidth of the pneumatics actuators are lower than
that of its hydraulic counterpart due to compressibility of
the air, resulting in timescales of the order of 100ms. On
the other hand pneumatics is cleaner, lighter, quieter and
easier to operate. They have properties similar to biological
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muscles which make them quite desirable for biological
applications seeking compliance – (1) they are back drivable
and compliant at the mechanism level; (2) they have internal
activation state (air pressure in the case of pneumatics, cal-
cium concentration in the case of muscles) whose dynamics
makes the entire system 3rd-order; (3) Pressure dynamics
effectively introduces a low pass filter between the command
and the force with timescales similar to that of biological
muscles; (4) Much like biological muscles, co-contraction
can be achieved by tuning the stiffness of the antagonistic
counterparts. Compressibility is often considered a liability,
but it is quite desirable at the same time. Spring dampers have
long been used in mechanisms design for desirable passive
behaviors. Pneumatics is the most generic form of an actuated
spring damper with tunable gains. There is no doubt that – if
efficient controllers are realised, pneumatics actuators (fluid
actuators in general) will gain strong traction, specially in
robotic applications.

(a) ADROIT hand mounted (ten-
dons disconnected) on the pneu-
matic muscle assembly

(b) Pneumatic muscle [AC:
Actuator, LS: Length Sen-
sor, PS: Pressure Sensor]

Fig. 1: Hardware setup

Our interest in synthesising complex behaviors [5] [6]
[7] for biological systems and the desirable properties of
pneumatic actuators led us into the development of ADROIT
manipulation platform [1] – which is a modified Shadow
Hand with custom pneumatic actuation (Figure 1). Our spe-
cific motivation for designing pneumatic controllers roots
in the need of high performing low level controllers for
ADROIT. In order to extract performance out of a system
with large timescale and low bandwidth, effective planning



through the dynamics of overall system is required. Pneumatic
dynamics modelling has received significant attention in the
past – parametric [8] as well as physical models [9] have
been developed. We build and improve on these pressure
dynamics models as we exploit ideas from the field of model
based trajectory optimization to design a high performance
pneumatic controller for our system. This work is a natural
continuation of our previous works in [10] and [8].

II. SYSTEM
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Fig. 2: System architecture

We first describe our system (Figure 2) with relevant
technical details. Later, we present experimental observations
that highlight properties relevant for controller design.
A. Hardware

ADROIT platform houses a 24 DoF bio-mimetic hand
(Figure 1a). 20 Dofs are independently actuated using 40 an-
tagonistic pneumatic muscle actuation units (Figure 1b) while
the rest (finger’s distal joints) are coupled. ADROIT’s control-
loop runs are 200 Hz, sampling 135 sensors and commanding
48 actuators using a 9 slot NATIONAL INSTRUMENTS 3U
PXIe-1078 chassis1(NI). The chassis is configured from the
computational unit 2 using a PXIe-PCIe 798MB/s bandwidth
data channel.

A low friction, low stiction double acting pneumatic cylin-
der (AIRPEL M9 37.5NM, AIRPORT Corporation, [11])
forms the muscle actuation unit. As muscles can only pull,
the rear chamber of the cylinder is left passive and open to
the atmosphere. Each unit has stroke length of 37.5mm, can
produce 42N of force at 100 PSI and weighs about 37.5
grams. Airpel replaces traditional pneumatic seals with “air
seals” in order to achieves low friction and low stiction con-
ditions. While air seals are desirable for smooth movements,
the constant leakage from the seals makes the non linear
pneumatic dynamics further chaotic and hard to model.

The muscle actuation unit is observed using two sensors.
The pressure inside a muscle unit is observed using a solid
state (SMC PSE540-IM5H3) pressure sensor. The muscle
excursion is measured as piston stork length using a mag-
netic length sensor (SICK MPS-032TSTU04). The pressure

1The chassis has a data rate of 1Gb/s, 250 Mb/s bandwidth per slot.
212 cores 3.47GHz Intel(R) Xeon(R) processor with 12GB memory

running Windows x64
3The pressure sensor can measure up to 106pascal with < 2% resolution,

< ±0.7% linearity, < ±0.2% repeatability and weighs 4.6 grams
4The length sensors can measure up to 32 mm excursions with 0.05mm

(about 2mm in practice) resolution, < 0.3mm linearity, < 0.1mm
repeatability, The sensor has sampling time of 1ms and can sense movements
up to a max speed of 3m/s.

sensors are sampled at 32KHz and the length sensors are
sampled at 9Khz. High frequency components of the sensor
readings are filtered out, using low pass filters, before they
are made available for use. High sampling rate allows us to
perform data filtering without introducing significant delays.
Joint angle sensors are sampled using an embedded micro-
controller(MCU) at 500Hz.

A high flow 5/3 festo proportional valve is used to drive the
front chamber of the muscle actuation unit. The proportional
valve (MPYE-5-M5-010-B from FESTO) has a flow rate of
100 liters/min at 87 PSI, bandwidth of 125 Hz and weighs
290gms.

B. Hardware exploration
We explored the asymptotic pressure response (Figure 3)

of the ADROIT’s pneumatic muscle unit by subjecting the
volume locked assembly to voltage step changes from either
extremes. The input voltage affects the flow through the
valve. Ideally, the asymptotic response of the value should
be a step function. Near the zero point (center of the input
range) of the valve, it is partially connected to both the
source (compressor) and the sink (atmosphere), resulting in
intermediate asymptotic values. The pressure dynamics is
significantly slower around the zero point as illustrated by the
time required to reach the asymptotic pressure curve. Impulse
response obtained from the step changes, for two different
tube lengths, are illustrated in Figure 4. Higher latencies for
the longer tubes can be attribute to the time required for
pressure wave to travel though them.

The steady state responses (Figure 5) of the muscle unit
was obtained as slow varying voltage signals sweep the
input range of a volume locked assembly. Normalization
wrt the compressor pressure reveals its dependence on the
compressure pressure, which changes as we use the system.
The fat belly around the center illustrates the nondeterministic
nature of the spool (hence the pressure) around the valve’s
zero position. A pneumatic valve spends most of its time
around the nominal positions. The nondeterminism around
the nominal position might pose significant challenge for
controller design.

The muscle assembly was subjected to chirp signals to
study the frequency response of the over-all pneumatic circuit.
The critical frequency was found to be around 25Hz.
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Fig. 3: Asymptotic pressure response of Adroit’s actuators
III. PNEUMATICS

A. Cylinder
A cylinder (Figure 7) is a device with two chambers,

separated by a moving bore. Each chamber has an orifice,
called port, that connects it to a pressure reservoir. The
reservoir with pressure higher (usually air compressor) than
that of the chamber is called the source and the corresponding
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Fig. 6: Flow characterization of ADROIT’s muscle unit

port is called the supply port. The reservoir with pressure
lower (usually atmosphere) than that of the chamber is called
the sink and the corresponding port is called the exhaust port.

B. Valve
The pressure inside a chamber can be regulated by con-

necting a valve to it’s port. A valve is a mechanical device
that connects a chamber to multiple reservoirs (usually two
- a source and a sink) and regulates the cross-sectional
area opening between them. Two commonly used types of
valves are (a) binary on/off valves which use Pulse Width
Modulation scheme for area modulation and (b) proportional
solenoid valves. Unlike binary valves, proportional valves
are expensive but provide fine grained control over the port
area resulting in smooth operation. A solenoid actuated spool
moves inside the valve in response to the input command
thereby smoothly changing the port’s cross-sectional area
(Figure 8).
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C. Thin Plate Port pressure dynamics model

The thin plate port model (Figure 9) explains the flow
of fluid (air) through a port as a function of the area of
the orifice, the upstream pressure pu and the downstream
pressure pd. Assumption being that the plate connecting the
chambers is thin, the port area is small, fluid in use is a
perfect gas, both the chambers are at the same temperature
and the flow is isentropic. Thin plate port model is common
in the pneumatics control literature. [9] is an excellent article
that reviews and builds on previous work in the light of
real time control applications. Modifications, with justified
assumptions, have been proposed to handle computational
complexity while accounting for prediction accuracy neces-
sary for such applications. The model is briefly summarized
below for completeness.
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1) Thin plate flow function: Thin plate flow function
φ(pu, pd) describes the mass flow ṁ through a port per unit
port area a.

ṁ = a · φ(pu, pd) (1a)

φ(pu, pd) =

{
z(pu, pd) if pu ≥ pd
−z(pd, pu) if pu < pd

(1b)



z(pu, pd) =


α pu

√(
pd
pu

) 2
κ −

(
pd
pu

)κ+1
κ

for pu/pd ≤ θ

βpu for pu/pd > θ

(1c)

The physical constants κ, α, β and θ are described in the
Appendix (Section VII). Note that the flow function (Figure 9)
is continuously differentiable and is linear in the upstream
pressure pu for pu > θpd.

2) Two port chamber: The net mass flow into a chamber
with two ports can be described as

ṁ(p, ac, ar, pc, pr) = acφ(pc, p)− arφ(p, pr) (2)

where ac, ar are the orifice areas connecting the chamber
to the compressor and room respectively, and pc, pr are the
respective constant pressures. Figure 10 shows this function
to be monotonically decreasing, which corresponds to stable
dynamics that converge to a steady-state pressure pss given
by acφ(pc, pss) = arφ(pss, pr).
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Fig. 10: Two port chamber

3) Chamber pressure dynamics model: Using ideal gas
laws, two port net flux (Equation (2)) and polytropic process
with isothermal constraints, pressure dynamics of a single
chamber can be written as

ṗ(p, u, v, v̇, pc, pr) = κ
RT

v
ṁ− κ v̇

v
p (3a)

ṁ(p, u, pc, pr) = ac(u)φ(pc, p)− ar(u)φ(p, pr) (3b)

where v is the volume of the chamber, v̇ is the rate of
change of that volume and κ,R and T are physical constants
(see Appendix (Section VII)). The first term in the pressure
dynamics equation (Equation (3a)) captures the dynamics
dictated by the net flow into the chamber, while the second
explains the dynamics due to the changing chamber volume.
D. Parametric pressure dynamics model

The over all time scale of a pneumatic system depends on
the valve dynamics, the delays in the pneumatic circuit, and
the chamber volume (Equation (3a)). While the pneumatic
is slow in general, a fully retracted cylinder with a low
chamber volume can have a time constant of the order of
microseconds. As a result, a generic parametric form of
pressure dynamics will need extremely small time step or
a variable time integrator in order to integrate the dynamics
forward.

ṗ(p, u, v, v̇)|c =
(
s(u, v, v̇)|c− p

)
· r(u, v, v̇)|c (4)

Equation (4) summarises the parametric model that we zeroed
in our prior work [8]. Note that it is linear with respect to
p, allowing allows us to perform analytical integration. As a
result it is stable for arbitrary time step, and computationally
inexpensive to evaluate. The function s() has a unit of
pressure and represents the steady state pressure. The r() > 0
has a unit of inverse of time and represents the rate of change.
The system is differentiable if s() and r() are differentiable.

Here we present a slightly modified parametric model (note
that the parametric form is still the same) that is more general
and delivers better predictions.

ṗ(p, u, v, v̇, pc, pr)|c =
(
cb + cssigmoid(c3û+ c4û

3)

− p)
c7
(
sabs(û) + c8û) + c9

τ
+
c5v̇p

τ
(5)

Where cb = (pc + pa)/2 represents the mid point pressure,
cs = (pc − pa)/2 represents the pressure range, û = u − c2
is centered control voltage, τ = 1 + c6, sigmoid(z) =

z/
√

1 + z2 and sabs(z) =
√
z2 + c2γ − cγ . Note that cs

and cb are no longer fixed constants based on maximum and
minimum pressure (as treated in [8]). They now are inputs to
the model that need to be updated using real time pressure
readings.

IV. MODEL IDENTIFICATION

A. Thin port model
The dependence of port area on input voltage ac(u), ar(u)

is not known and is not possible to measure directly. We
obtain this dependency using numerical optimization. A vol-
ume locked chamber (v̇ = 0) was subjected to step voltage
changes starting from each voltage extreme. We solve a small
optimization problem to recover {auic , auir } pair for each
voltage step. Standard curve fitting techniques was used to
fit a parametric form (gompertz function 6) to the resulting
area pairs. Refer [12] for details.

{auic , auir , vo} = argmin
ac,ar,vo

{
Ṗuimeasured −

κ
RT

v + vo

(
auic f(Pc, p)− auir f(p, Pr)

)}
a(u)|c = c0 + c1e

−c2e−c3(û+c4)

(6)

Where c0 is the minimal leak area of the port, û = (u−c1) is
the centered control voltage. Figure 11c outlines the recovered
area pairs and the parametric area fits. Figure 11a and 11b
presents the p and ṗ predictions using the identified model.

B. Parametric model
1) Steady state response: In order to capture the steady

state response s(u, v, v̇; c) of our pneumatic system, a volume
locked chamber was subjected to slow varying control input.
The slow varying control input drags the system equilibrium
along as it sweeps the entire input range. We fit a steady
state model of the form psteady state = cb+cssigmoid(c3û+
c4û

3) to the resulting data. Figure 13 summarizes the system
response and the model predictions wrt time(left) and input
voltage (right). Unlike the predictions (black curves) from our
old model [8] with fixed cs and cb, the predictions from the
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model using real time cb and cs readings nicely captures the
dependence of the steady state pressure on the compressor
pressure.
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2) Rate: For data diversity, the cylinder was overdriven by
applying external forces to the cylinder’s piston (in order to
diversify the chamber’s volume v and the rate of change of
volume v̇) while it was subjected to random signals for rate
r(u, v, v̇; c) identification. As we aren’t explicitly modelling
the valve dynamics, the random signals were low passed fil-
tered (30 Hz butterworth) below the valve’s critical frequency
(125 Hz) before they were executed on the hardware.
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actuators. Adroit’s actuators have much higher rates and are
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The rate (Figure 14) reveals valuable information about
the dynamics, and its sensitivity, of our pneumatic system. A
system with high flow rate valve and small chamber volume
should have fast dynamics. Which is indeed the case – the
rate of the identified model grows rapidly with control input.
While fast dynamics means better throughput, it also means
that the system is highly sensitive to the control input and
timing delays. Small control input will be enough to drive the
system (Section VI) and the wide proportional regime of our
expensive valves will be hard to exploit. We also observe that
rate is relatively insensitive to the volume v and volume rate
v̇. This can be attributed to the fact that the chamber has small
volume and stroke length. As a result, the changes induced
by the bore movement is insignificant. This insensitivity can
be exploited to simplify the pressure model5.

ṗ(u, pc, pr)|c =
(
cb + cssigmoid(c3û+ c4û

3)

− p)
(
c7
(
sabs(û) + c8û) + c9) (7)

V. HIGH PERFORMANCE PNEUMATIC CONTROLLER

High level motion planners have seen significant advance-
ments in recent times. We now have planners that can plan
in real time for high DoFs robots [5] [6] [7]. The planners
are no longer short sighted and impulsive. They reason about
the movements in longer time horizon and opt for instant
replanning if the execution derails form the plan. Most of
these improvement primarily stem from the fact that we now
have more computational resources at our disposal, that are
being utilized for better understanding of the system via
simulation, data analysis, optimization, learning etc.

Pneumatic systems are knows to have significant laten-
cies. Compressibility of the air results in long time con-
stants(Figure 4) that throttles the bandwidth of the system.
Local feedback controllers are unable to deal with these
challenges to deliver performance required by a dynamical
system. The proposed controller does that by leveraging the
dynamics model of the system to unfold the system forward
in time and reasoning about the actions over a longer time
window (called horizon). The predictive capability from the
pneumatics models (from Section IV), lets our controller

5We haven’t simplified the models for our use case at this point as the
simplification doesn’t hold for the arm cylinders which are significantly
bigger than the hand cylinders. From the software architecture standpoint,
we would like to treat all the cylinder identical, if possible.



Algorithm 1 Trajectory Optimization
Input: Dynamics f(x,u), running cost li(xi,ui), final costs
lf (xN), current state x0, warm-start sequence U.
Output: Locally optimal control sequence
Û

1: Rollout: Integrate U to get the initial trajectory(xi,ui)
2: Derivatives: Get derivatives for li and lf
3: Backward pass: Calculate the second order approxima-

tions of V(x, i). Obtain a search direction ∆U as 2nd-
order solution to the Equation (9)

4: Forward Pass: Rollout x0 and U + αU forward with
different line search parameters 0 < α < 1 to pick the
winner

make anticipatory preparation for actions well in advance,
resulting in improved performance. We outline the necessary
details of our controller below

A. Controller design
Instead of having a myopic view presented by the im-

mediate desired pressure value pdest, our controller design
focuses on designing a policy using a macroscopic view
as presented by a desired pressure trajectory over a time
horizon T = N ∗ dt. Given the desired pressure trajectory
Pdes = [pdest,pdest+dt, ..,pdest+(N−1)dt], the goal of our
controller is to find the appropriate policy, in the space of
valve commands, that guides the system though p̂des over
time. We pose the policy design problem as a finite hori-
zon optimal control problem and deploy standard trajectory
optimization techniques, iterative-LQG [13] in this case, for
efficient solutions in real time.

B. Finite horizon optimal control
Given the state xi, controls ui at time i, let the discrete

time dynamics of a system be described as x̂ = xi+1 =
f(xi, ui). The finite horizon optimal control problems can be
posed as – starting from an initial state x0 solve for a time
varying control law Û(x) that minimizes the cumulative sum
of the running cost li(xi,ui) and the final cost lf (xN) along
a trajectory.

Û(x) = argmin
U

N−1∑
i=0

li(xi,ui) + lf (xN) (8)

C. Trajectory optimization
Our choice of trajectory optimizer (iterative-LQG [13])

solves the problem above using the principles of dynamic
programming. The value V(x, i) corresponding to a state x
at time i indicates the minimal cost incurred to optimally
solve the problem for remaining N − i steps. The final
values function V(x,N) = lf (xN) is just the final cost.
Dynamics programming principle reduces the minimization
over a sequence of controls Ui to a sequence of minimization
over a single control, proceeding backwards in time

V(x, i) = min
u

[l(x,u) + V(f(x,u), i+ 1)] (9)

The algorithm is outlined in Algorithm 1. We recommend
[13] for in-depth analysis and [5] [6] [7] for more applica-
tions.

D. Model Predictive Control (MPC)

The goal of this work is to abstract out the pneumatic
actuators as ideal torque actuators. The controller in consid-
eration will form the low level controller of the ADROIT
actuation system. The goal is to design low level controllers
that emulate ideal force controllers using non-liner pneu-
matic actuator. As the system is always in motion for the
low level controllers, the Pdes (specified by the high level
controllers) is constantly flowing with time, even when the
high level controller is demanding a constant torque. If the
system dynamics was linear and the cost we deploy was
quadratic we will find the optimum in single iteration of the
trajectory optimization Algorithm 1. The pressure dynamics
is highly nonlinear and the cost we use is not quadratic
either. Therefore, the algorithm needs multiple iterations to
work through the linear approximation of the dynamic and
quadratic approximation of the cost to converge on an optima.

As the system is always in motion, we deploy the trajectory
optimization in a Model Predictive Control (MPC) fashion.
Which means instead of solving for the optimum, starting
from our current state estimates, we will only take few
iteration of the algorithm, improve the policy for the current
estimates, and then opt for an estimates update. There are
multiple rational behind this choice – (1) The model used for
planning will never be perfect and we will never reach the
true optimum even if we have it; (2) Solving for optimum is
computationally expensive. Fast policy update provides better
performance by dragging the system closer to the optimum
with each update; (3) The low level controller has no controls
over the demands of the high level planner. The high level
planner can decide to abruptly change the plan. The best
choice for the low level controller is to respect its demands
as soon as possible.

E. State and System Dynamics

The state x = [p,w]
T of our system is of dimensionality

2na, where na is the number of actuators in the system (40
for ADROIT hand). It consists of cylinder pressure p and
valve memory w, which is the controls (valve voltages) from
the previous time step. System dynamics can be written as

x = [p,w]
T

;xt+dt = f(xt,ut)|v,v̇ = [pt+dt,ut]
T (10)

Where pt+dt is obtained using the pressure dynamics models
of likes outlined in Section III-C (by euler integration of
Eq3) and III-D (Eq4 can be exactly integrated forward). It is
important to note that the volume v and volume rate v̇ is not
a part of the system’s state x. They are required as inputs to
the pressure dynamics and enter the system as external sensor
readings. This is possible because, given the volume v and
volume rate v̇, the pressure dynamics is independent of the
dynamics of the piston (and the external load its driving).
Similarly, given the net force on the piston, the piston
dynamics is independent of the pressure dynamics. Since the
sensor for measuring chamber pressures and piston stroke
lengths are cheap and reliable (and available in ADROIT),
we exploit this independence.



F. Cost Function

The running cost of the system is of the form

li(xi,ui) = αp.||pdesi − pi||+ αu.||udesi − ui||
+ αw.||ui −wi||

(11)

The final cost lf (xN) is same as the running cost. The
justification for including the valve memory w in the state
can be found in the last term of the cost i.e. αw.||ui −wi||.
This term forces the optimizers to pick similar controls for the
time steps adjacent to each other. Thus ensuring smoothness
in the final control sequence that executes on the hardware.
Without this term, the optimizers are free to pick arbitrary
sequence of chattering controls, as long it minimizes the
cost objective. Rapidly chattering control sequence keeps the
pneumatic valves always active and on the edge of their
critical frequency, resulting in decreased performance and
hardware wear. αw can be adjusted to tune the amount of
smoothing required.

G. Simulation results
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Fig. 15: Controller comparison

We use a 1 DoF platform with pneumatic actuator to com-
pare the performance of different controllers under identical
conditions. We prefer simulated platform for this comparison
as it allows us to study a controller’s performance independent
of the unpredictability of the real world. Figure 15 outlines the
performance of our trajectory optimization based controller
with the PIDF controller [10]. Unlike the myopic nature of
the PIDF which acts only after the change is demanded,
anticipatory nature of the iLQG controllers results in lower
latency and better performance. Close attention to the pressure
highlights pneumatic activity ahead of time and stiffness
lowering when possible.

VI. CONTROLLER PERFORMANCE

While identifying the parametric model (Figure 14) we
learned that, because of the small volume of our cylinders, the
pressure dynamics is quite insensitive of piston position and
velocity. Leakage of the ADROIT pneumatic muscle unit fur-
ther complicates the nonlinear dynamics. To circumvent these
complications, we first present our controller’s performance
(Figure 16 & 17) on a leak free volume locked cylinder (Festo
DSN104P).

Fig. 16: pressure tracking for a volume locked FESTO
cylinder+ Thin Port + short tube. (a) 2Hz (b) Random (c)
Instantaneous change

Fig. 17: pressure tracking for a volume locked FESTO cylin-
der+ parametric model+ short tube. (a) 2Hz (b) Random (c)
Instantaneous change

(a) 1Hz (b) 2Hz

(c) Random (d) Instantaneous changes

Fig. 18: Controller’s performance on a free to move (Airpel
M09D37) cylinder with leak, while using pressure dynam-
ics model learned on a leak-free volume-locked ( FESTO
DSN104) cylinder.

A. Trajectory Optimization and MPC details
To have all the optimization entities roughly in the same

scale, we use pressure in Mega Pascal. The pneumatic con-
troller and the hardware driver are two separate processes
communicating using sockets. At the onset of a control loop,
the controller receives the current estimates from the hardware
driver and responds with the controls queried using the current



policy. The iLQG is parallelized across 8 physical cores. The
planning horizon is 200 ms (N = 100, dt = 0.005s) long. The
policy lag is between 7.5 to 10 ms. The cost coefficients are
αp = 1, αu = 10−4, αw = 10−4.

B. Controller’s robustness
In order to demonstrate (Figure 18) the effectiveness of

our approach and the robustness of the resulting controller, we
artificially induce modelling errors in the system, by replacing
the volume locked leak free cylinder with moving cylinder
with leak (ADROIT pneumatic muscle unit). In order to
evaluate our controller’s ability to deal with abrupt change
in the demands from the high level planner (Figure 16c
& 17c), we subject the controller to instantaneous random
changes in entire desired future sequence starting from current
time. These instantaneous changes renders the current policy
useless due to the local nature of the controller’s linear
feedback policies. The optimizer acts on these instantaneous
demands only after the next policy is pushed to the hardware.

C. Real world considerations
Results on a hardware platform is a combination of sound

theory, good implementations and few practical considera-
tions that get highlighted only in the real world. For repro-
ducibility of the results, we outline our experiences learned
while deploying the system.

1) Timing is the key to performance: The inherent pneumatic
latency doesn’t leave a lot of leeway for the controllers to
drive the system through dynamic movements. Every effort
was taken to minimize the latency of the system to the
extent possible. Special attention was required for hardware-
controller clock synchronization, data communication laten-
cies, sensor data filtering latencies, estimates and policy lag,
optimizer’s computational needs and execution latencies (as
the policy is queried over the network).

2) Pneumatic nonlinearities: The discontinuity in port areas
as valve’s spool moves across zero position induces severe
non-linearities. The noise in the spool movement makes these
nonlinearities unpredictable and hard to model. Special atten-
tion was required while modelling the pneumatic dynamics
near the valve’s zero point.

3) Smooth operations: As the valve chatters around its zero
position making minor improvements, the pneumatic non-
linearities around zero position severely degrade the con-
trollers performance. Introduction of valve memory w and
cost αw.||ui − wi|| for smoothing the controls significantly
improves controller’s performance.

4) Operational regime: Smoothness requirements promote the
controller to leverage the inherent smooth dynamics of the
system over abrupt changes in the value controls resulting
in plans with small and smooth controls. In practice, the
controller uses only 40% of the valves input range. In light of
this observation, control limits were enforced on the controller
using [14] and iterative model learning methods were used to
refit the pneumatic models to the restricted range of operation.
Restricting the operation range, allows us to run the control
loop faster (200Hz) as the critical frequency of a valves is
much wider for small movements.

5) feedback: Our system tends to be more stable delivering
better performance with partial feedback (around 20%).

VII. APPENDIX

The physical constants in Eq. Equation (1) are given by:

α = C

√
2M

Z R T

κ

κ− 1
θ =

(
κ+ 1

2

) κ
κ−1

β = C

√
κM

Z R T

(
2

κ+ 1

) κ+1
κ−1

Gas Molecular Mass M 0.029 for air, Kg/mol
Temperature T K◦

Universal Gas Constant R 8.31 (Pa ·m3)/(mol K◦)
Discharge coefficient C 0.72, dimensionless
Compressibility Factor Z 0.99 for air, dimensionless
Specific Heat Ratio κ 1.4 for air, dimensionless
Mass Flow ṁ Kg/s
Pressure p Pascals
Area a m2

TABLE I: Parameters and units of the thin-plate port model.

REFERENCES
[1] V. Kumar, Z. Xu, and E. Todorov, “Fast, strong and compliant pneu-

matic actuation for dexterous tendon-driven hands,” in IEEE Interna-
tional Conference on Robotics and Automation, 2013.

[2] Boston Dynamics, http://www.bostondynamics.com.
[3] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,

and D. G. Caldwell, “Design of hyq–a hydraulically and electrically
actuated quadruped robot,” Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Eng., 2011.
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