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Abstract
We explore learning-based approaches for feedback control of a dexterous five-finger hand performing non-prehensile
manipulation. First, we learn local controllers that are able to perform the task starting at a predefined initial state.
These controllers are constructed using trajectory optimization with respect to locally-linear time-varying models
learned directly from sensor data. In some cases, we initialize the optimizer with human demonstrations collected
via teleoperation in a virtual environment. We demonstrate that such controllers can perform the task robustly, both
in simulation and on the physical platform, for a limited range of initial conditions around the trained starting state.
We then consider two interpolation methods for generalizing to a wider range of initial conditions: deep learning,
and nearest neighbors. We find that nearest neighbors achieve higher performance under full observability, while a
neural network proves advantages under partial observability: it uses only tactile and proprioceptive feedback but no
feedback about the object (i.e. it performs the task blind) and learns a time-invariant policy. In contrast, the nearest
neighbors method switches between time-varying local controllers based on the proximity of initial object states sensed
via motion capture. While both generalization methods leave room for improvement, our work shows that (i) local
trajectory-based controllers for complex non-prehensile manipulation tasks can be constructed from surprisingly small
amounts of training data, and (ii) collections of such controllers can be interpolated to form more global controllers.
Results are summarized in the supplementary video: https://youtu.be/E0wmO6deqjo
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1 Introduction

Dexterous manipulation is among the most challenging
control problems in robotics, and remains largely unsolved.
This is due to a combination of factors including high
dimensionality, intermittent contact dynamics, and under-
actuation in the case of dynamic object manipulation.
Here we describe our efforts to tackle this problem in
a principled way. We do not rely on manually designed
controllers. Instead we synthesize controllers automatically,
by optimizing high-level cost functions, as well as by
building off of human-provided expert demonstrations.
The resulting controllers are able to manipulate freely-
moving objects, as shown in Figure 1. Such non-prehensile
manipulation is challenging, since the system must reason
about both the kinematics and the dynamics of the
interaction Lynch and Mason (1999). We present results
for learning both local models and control policies that
can succeed from a single initial state, as well as more
generalizable global policies that can use limited onboard
sensing to perform a complex grasping behavior. The small
amount of data needed for learning each controller (around
60 trials on the physical hardware) indicate that the approach
can practically be used to learn large repertoires of dexterous
manipulation skills.

We use our ADROIT platform Kumar, Xu and Todorov
(2013), which is a ShadowHand skeleton augmented with
high-performance pneumatic actuators. This system has a
100-dimensional continuous state space, which is comprised

of the positions and the velocities of the 24 hand joints, the
pressures in the 40 pneumatic actuators, and the position and
the velocity of the free object object being manipulated.

Pneumatics have non-negligible time constants (around
20 ms in our system), which is why the cylinder pressures
represent additional state variables, making it difficult to
apply torque-control techniques. The system also has a
40-dimensional continuous control space – namely the
commands to the proportional valves regulating the flow
of compressed air to the cylinders. The cylinders act on
the joints through tendons. The tendons do not introduce
additional state variables (since we avoid slack via pre-
tensioning) but nevertheless complicate the dynamics.
Overall this is a daunting system to model, let alone control.

Depending on one’s preference of terminology, our
method can be classified as model-based Reinforcement
Learning (RL), or as adaptive optimal control (Bellman
and Kalaba 1959). While RL aims to solve the same
general problem as optimal control, its uniqueness comes
from the emphasis on model-free learning in stochastic
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Figure 1. Learned hand manipulation behavior involving clockwise rotation of the object

domains (Sutton and Barto 1998). The idea of learning
policies without having models still dominates RL, and
forms the basis of the most remarkable success stories, both
old (Tesauro 1994) and new (Mnih, Kavukcuoglu, Silver,
Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland and
Ostrovski 2015). However RL with learned models has
also been considered. Adaptive control on the other hand
mostly focuses on learning the parameters of a model
with predefined structure, essentially interleaving system
identification with control (Åström and Wittenmark 2013).

Our approach here lies somewhere in between (to fix
terminology, we call it RL in subsequent sections). We
rely on a model, but that model does not have any
informative predefined structure. Instead, it is a time-
varying linear model learned from data, using a generic
prior for regularization. Related ideas have been pursued
previously (Mitrovic, Klanke and Vijayakumar 2010; Levine
and Abbeel 2014; Levine, Wagener and Abbeel 2015b).
Nevertheless, as with most approaches to automatic control
and computational intelligence in general, the challenge is
not only in formulating ideas but also in getting them to
scale to hard problems – which is our main contribution here.
In particular, we demonstrate scaling from a 14-dimensional
state space in (Levine, Wagener and Abbeel 2015b) to
a 100-dimensional state space here. This is important in
light of the curse of dimensionality. Indeed RL has been
successfully applied to a range of robotic tasks (Tedrake,
Zhang and Seung 2004; Kober, Oztop and Peters 2010;
Pastor, Hoffmann, Asfour and Schaal 2009; Deisenroth,
Rasmussen and Fox 2011), however dimensionality and
sample complexity have presented major challenges (Kober,
Bagnell and Peters 2013; Deisenroth, Neumann and Peters
2013).

The manipulation skills we learn are initially repre-
sented as time-varying linear-Gaussian controllers. These
controllers are fundamentally trajectory-centric, but other-
wise are extremely flexible, since they can represent any
trajectory with any linear stabilization strategy. Since the
controllers are time-varying, the overall learned control
law is nonlinear, but is locally linear at each time step.
These types of controllers have been employed previously
for controlling lower-dimensional robotic arms (Lioutikov,
Paraschos, Neumann and Peters 2014; Levine, Wagener and
Abbeel 2015b).

For learning more complex manipulation skills, we also
explore the use of human demonstrations to initialize the
controllers. Complex tasks with delayed rewards, such as
grasping and in-hand repositioning of a heavy object, are
difficult to learn from scratch. We show that a teleoperation
system can be used to provide example demonstrations from

a human operator using a glove-based interface, and that
these demonstrations can be used to initialize learning for
complex skills.

Finally, to move beyond local policies that can succeed
from only a narrow range of initial states, we explore
generalization through two distinct approaches. For both
methods, we train a collection of local policies, each
initialized with a different initial demonstration. The first
method uses a nearest neighbor query to select the local
policy based on an euclidean distance measure. In the second
method, we use a deep neural network to learn to mimic
all of the local policies. Our experimental results show that
the nearest neighbor approach achieves the best success rate
under full observability, but at the cost of requiring the
variables for the nearest neighbor queries (the pose of the
object) to be provided. We show that the deep neural network
can learn a time-invariant policy for performing the task
without requiring knowledge of the object pose at all, using
only onboard sensing on the five-finger hand to perform the
task.

The work on local trajectory-based control (Sections 5
and 6) was previously described in conference proceedings
(Kumar, Todorov and Levine 2016) while the work
leveraging expert demonstrations to learn from imitation and
experience (Section 7), and generalization of local policies
into global policies (Section 8) is novel and is described here
for the first time. It is worth noting that the methods and
the experiments described in these sections are novel and
the method is applied to a different, more challenging task.
The contributions have a significant empirical contribution
as they show that these methods can be brought to be
successful for the control of a high dimensional five-fingered
hand across variability in object positions and for partial
observability.

2 Related Work
Although robotic reinforcement learning has experienced
considerable progress in recent years, with successful results
in domains ranging from flight (Abbeel, Coates, Quigley
and Ng 2006) to locomotion (Tedrake, Zhang and Seung
2004) to manipulation (Peters, Mülling and Altun 2010a;
Theodorou, Buchli and Schaal 2010; Peters and Schaal
2008), comparatively few methods have been applied to
control dexterous hands. (van Hoof, Hermans, Neumann and
Peters 2015) report results for simple in-hand manipulation
with a 3-finger hand, and our work reports learning of simple
in-hand manipulation skills, such as rotating a cylinder, using
time-varying linear-Gaussian controllers (Kumar, Todorov
and Levine 2016). However, neither of these prior methods
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demonstrate generalization to conditions not seen during
training. Our experiments demonstrate that our approach can
learn policies for a complex precision grasping task, and can
generalize to variation in the initial position of the target
object. In contrast to in-hand manipulation, this task exhibits
complex discontinuities at the point of contact. We overcome
this challenge by combining learning from experience with
imitation learning from human demonstrations, provided
through a data glove teleoperation interface. Some other
work such as (Rombokas, Malhotra, Theodorou, Todorov
and Matsuoka 2013) consider using PI2 for optimization of
tasks using an ACT hand and muscle synergies. In constrast
our work operates of the full actuation space, and uses a
model based method instead of the model-free PI2 which
makes it more sample efficient for real world application.

Initialization of controllers from demonstration is a widely
employed technique in robotic reinforcement learning
(Peters, Mülling and Altun 2010a; Theodorou, Buchli and
Schaal 2010). However, most prior robotic reinforcement
learning methods still use a hand-specified reward or
cost function to provide the goal of the task during
learning. Specifying suitable cost functions for complex
dexterous manipulation can be exceedingly challenging,
since simple costs can lead to poor local optima, while
complex shaped costs require extensive intuition about the
task. In our work, we define the cost in terms of the
example demonstrations. This approach resembles the work
of (Gupta, Eppner, Levine and Abbeel 2016), which used an
EM-style algorithm to associate demonstrations with initial
states in a reinforcement learning scenario. However, this
prior work showed results on a simple deformable hand
with limited actuation, and did not demonstrate dexterous
manipulation for complex tasks. (Doerr et al. 2015) also has
a similar flavor where demos are incorporated as a trade off
between inverse optimal control objective and policy search
reinforcement learning objective that rewards mimicking the
expert. Results however are limited to quasistatic reaching
and grasping movements. Choosing from a library of
controllers found using trajectory optimization has been
considered before in (Liu and Atkeson 2009) but for a
considerably different task and a much lower dimensional
system.

3 Overview
The ADROIT platform, which serves as the experimental
platform for all of our dexterous manipulation experiments,
is described in detail in Section 4. This system is used
in three sets of experiments: the first set of experiments
examines learning dexterous manipulation skills from
scratch using trajectory-centric reinforcement learning, the
second set of experiments is focused on learning more
complex skills with a combination of trajectory-centric
reinforcement learning and learning from demonstration, and
the third set of experiments examines how various methods,
including nearest neighbor and deep neural networks, can
be used to acquire a single generalizable skill that succeeds
under various circumstances by combining multiple learned
behaviors.

The trajectory-centric reinforcement learning algorithm
that we use combines the linear-quadratic regulator (LQR)

algorithm with learned time-varying local linear models.
This algorithm, which follows previous work (Levine and
Abbeel 2014), is described in Section 5. We then present
results on both a real-world and simulated version of the
ADROIT platform using the algorithm, in Section 6. This
first set of experiments focuses primarily on the capability
of the trajectory-centric reinforcement learning method to
efficiently learn viable and robust manipulation skills.

The second set of experiments, presented in Section 7 and
Figure 12, is aimed at evaluating how human demonstrations
can be used to aid learning for more complex skills.
In this section, we examine a grasping scenario, where
trajectory-centric reinforcement learning on its own does
not produce sufficiently successful behaviors, while human
demonstrations alone also do not achieve a sufficient
degree of robustness in the face of perturbations. We
demonstrate that combining demonstrations with trajectory-
centric reinforcement learning produces effective skills with
a high degree of robustness to variation in the initial
placement of objects in the world.

Our final set of experiments, presented in Section 8,
address the question of generalization: can we use multiple
skills, learned with a combination of imitation and trajectory-
centric reinforcement learning, to acquire a single robust and
generalizable dexterous manipulation policy? To that end, we
explore the use of 2 methods for combining the behaviors of
multiple skills - deep neural networks and nearest neighbors.
We demonstrate that nearest neighbors can provide effective
generalization under complete observability when provided
with the position of the manipulated object. We also
demonstrate that deep neural networks can learn time-
invariant manipulation policies that acquire the strategies
represented by the time-varying controllers learned with
trajectory-centric reinforcement learning, and furthermore
can perform those skills using onboard sensing in a simulated
experiment, without knowledge of the true position of the
manipulated object.

4 System
Modularity and the ease of switching robotic platforms
formed the overarching philosophy of our system design.
The learning algorithm (Algorithm 1) has no dependency on
the selected robotic platform except for step 3, where the
policies are shipped to the robotic platform for evaluation
and the resulting execution trajectories are collected. This
allows the training to happen either locally (on the machine
controlling the robot) or remotely (if more computational
power is needed).

Manipulation strategies were studied for two different
platforms detailed below.

4.1 Hardware Platform
The ADROIT platform is described in detail in (Kumar, Xu
and Todorov 2013). Here we summarize the features relevant
to the present context. ADROIT manipulation platform is an
anthropomorphic arm-hand system actuated using a custom
build high-performance pneumatic actuation. It consists of
a 24 dof hand and a 4 dof arm. As our motivation here is
to understand in-hard dexterous manipulation, we mounted
the 24 dof hand on a fixed base to promote finger centric
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behaviors. Fixed base severely limits the workspace of the
overall system but renders the system amenable to only
finger-based and wrist-based manipulation strategies. For
this work, we use the term ‘ADROIT’ to refer to the fixed
base 24 dof hand setup. 20 out of the 24 hands joints are
independently actuated using 40 antagonistic tendons. The
DIP joints are coupled with the respective PIP joint for
the 4 fingers. Finger-tendons can exert up to 42 Newton,
while the wrist-tendon can exert up to 120 Newton of
force. Each cylinder is supplied with compressed air via a
high-performance Festo valve. The cylinders are fitted with
solid-state pressure sensors. The pressures together with the
joint positions and velocities (sensed by potentiometers in
each joint) are provided as state variables to our controller.
ADROIT’s low-level driver runs on a 12 core 3.47GHz
Intel(R) Xeon(R) processor with 12GB memory running
Windows x64.

The manipulation task also involves an object – which is a
long tube filled with coffee beans, inspired by earlier work on
grasping (Amend Jr, Brown, Rodenberg, Jaeger and Lipson
2012). The object is fitted with PhaseSpace active infrared
markers on each end. The markers are used to estimate the
object position and velocity (both linear and angular) which
are also provided as state variables. Since all our sensors have
relatively low noise, we apply a minimal amount of filtering
before sending the sensor data to the controller.
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Figure 2. System overview

4.2 Simulation Platform
We model the ADROIT hand, including the antagonistic
tendon transmission, joint coupling and pressure dynamics,
using the MuJoCo simulator we have developed (Todorov,
Erez and Tassa 2012). Pressure dynamics are implemented
by extending the default actuation model with user callbacks.
Simulating a 5 s trajectory at 2 ms timestep takes around 0.7
s of CPU time or around 0.3 ms of CPU time per simulation
step. This includes evaluating the feedback control law
(which needs to be interpolated because the trajectory
optimizer uses 50 ms time steps) and advancing the physics
simulation.

Having a fast simulator enables us to prototype and
quickly evaluate candidate learning algorithms and cost
function designs, before testing them on the hardware.
Apart from being able to run much faster than real-time,
the simulator can automatically reset itself to a specified
initial state (which needs to be done manually on the
hardware platform). Note that the actual computation time

(involving GMM fitting, policy update, and network training)
is practically the same for both system as the system is
oblivious to the source of the observations (i.e if they were
generated by the hardware or the simulation platform).

Ideally, the results on the simulation platform should be
leveraged to either transfer behaviors or seed the learning
on the hardware platform. This, however, is hard in practice
(and still an active area of research in the field) due to (a)
the difficulty in aligning the high dimensional state space of
the two platforms, (b) the non-deterministic nature of the
real world. State space alignment requires precise system
identification and sensor calibration which otherwise are not
necessary, as our algorithm can learn the local state space
information directly from the raw sensor values.

(a) End pose, learned (b) End pose, human

(c) End pose, learned (d) End pose, human

Figure 3. Object rotation task: end poses for the two rotation
directions (a-b: clockwise, c-d: anticlockwise), comparing the
learned controller to the movement of a human who has not
seen the robot perform the task.

5 Reinforcement Learning with Local
Linear Models

In this section, we describe the reinforcement learning
algorithm (summarized in Algorithm 1) that we use to
control our pneumatically-driven five finger hand. The
derivation in this section follows previous work (Levine
and Abbeel 2014), but we describe the algorithm in this
section for completeness. The aim of the method is to
learn a time-varying linear-Gaussian controller of the form
p(ut|xt) = N (Ktxt + kt,Ct), where xt and ut are the
state and action at time step t. The actions in our sys-
tem correspond to the pneumatic valve’s input voltage,
while the state space is described in the preceding sec-
tion. The aim of the algorithm is to minimize the expecta-
tion Ep(τ)[`(τ)] over trajectories τ = {x1,u1, . . . ,xT ,uT },
where `(τ) =

∑T
t=1 `(xt,ut) is the total cost, and the expec-

tation is under p(τ) = p(x1)
∏T
t=1 p(xt+1|xt,ut)p(ut|xt),

where p(xt+1|xt,ut) is the dynamics distribution.
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Algorithm 1 RL with linear-Gaussian controllers

1: initialize p(ut|xt)
2: for iteration k = 1 to K do
3: run p(ut|xt) to collect trajectory samples {τi}
4: fit dynamics p(xt+1|xt,ut) to {τj} using linear

regression with GMM prior
5: fit p = argminpEp(τ)[`(τ)] s.t. DKL(p(τ)‖p̂(τ)) ≤

ε
6: end for

5.1 Optimizing Linear-Gaussian Controllers
The simple structure of time-varying linear-Gaussian
controllers admits a very efficient optimization procedure
that works well even under unknown dynamics. The method
is summarized in Algorithm 1. At each iteration, we run the
current controller p(ut|xt) on the robot to gather N samples
(N = 5 in all of our experiments), then use these samples
to fit time-varying linear-Gaussian dynamics of the form
p(xt+1|xt,ut) = N (fxtxt + futut + fct,Ft). This is done
by using linear regression with a Gaussian mixture model
prior, which makes it feasible to fit the dynamics even when
the number of samples is much lower than the dimensionality
of the system (Levine and Abbeel 2014). We also compute a
second order expansion of the cost function around each of
the samples, and average the expansions together to obtain a
local approximate cost function of the form

`(xt,ut) ≈
1

2
[xt;ut]

T`xu,xut[xt;ut] + [xt;ut]
T`xut + const.

where subscripts denote derivatives, e.g. `xut is the gradient
of ` with respect to [xt;ut], while `xu,xut is the Hessian.
The particular cost functions used in our experiments are
described in the next section. When the cost function
is quadratic and the dynamics are linear-Gaussian, the
optimal time-varying linear-Gaussian controller of the form
p(ut|xt) = N (Ktxt + kt,Ct) can be obtained by using the
LQR method. This type of iterative approach can be thought
of as a variant of iterative LQR (Li and Todorov 2004),
where the dynamics are fitted to data. Under this model
of the dynamics and cost function, the optimal policy can
be computed by recursively computing the quadratic Q-
function and value function, starting with the last time step.
These functions are given by

V (xt) =
1

2
xT
t Vx,xtxt + xT

t Vxt + const

Q(xt,ut) =
1

2
[xt;ut]

TQxu,xut[xt;ut]+[xt;ut]
TQxut+const

We can express them with the following recurrence:

Qxu,xut = `xu,xut + fTxutVx,xt+1fxut

Qxut = `xut + fTxutVxt+1

Vx,xt = Qx,xt −QT
u,xtQ

−1
u,utQu,xt

Vxt = Qxt −QT
u,xtQ

−1
u,utQut,

which allows us to compute the optimal control
law as g(xt) = ût + kt +Kt(xt − x̂t), where
Kt = −Q−1u,utQu,xt and kt = −Q−1u,utQut. If we consider
p(τ) to be the trajectory distribution formed by the

deterministic control law g(xt) and the stochastic dynamics
p(xt+1|xt,ut), LQR can be shown to optimize the standard
objective

min
g(xt)

T∑
t=1

Ep(xt,ut)[`(xt,ut)]. (1)

However, we can also form a time-varying linear-Gaussian
controller p(ut|xt), and optimize the following objective:

min
p(ut|xt)

T∑
t=1

Ep(xt,ut)[`(xt,ut)]−H(p(ut|xt)).

As shown in previous work (Levine and Koltun 2013),
this objective is in fact optimized by setting p(ut|xt) =
N (Ktxt + kt,Ct), where Ct = Q−1u,ut. While we ulti-
mately aim to minimize the standard controller objective in
Equation (1), this maximum entropy formulation will be a
useful intermediate step for a practical learning algorithm
trained with fitted time-varying linear dynamics.

5.2 KL-Constrained Optimization
In order for this learning method to produce good results, it
is important to bound the change in the controller p(ut|xt)
at each iteration. The standard iterative LQR method can
change the controller drastically at each iteration, which can
cause it to visit parts of the state space where the fitted
dynamics are arbitrarily incorrect, leading to divergence.
Furthermore, due to the non-deterministic nature of the real
world domains, line search based methods can get misguided
leading to unreliable progress.

To address these issues, we solve the following
optimization problem at each iteration:

min
p(ut|xt)

Ep(τ)[`(τ)] s.t. DKL(p(τ)‖p̂(τ)) ≤ ε,

where p̂(τ) is the trajectory distribution induced by the
previous controller. Using KL-divergence constraints for
controller optimization has been proposed in a number of
prior works (Bagnell and Schneider 2003; Peters and Schaal
2008; Peters, Mülling and Altün 2010b). In the case of
linear-Gaussian controllers, a simple modification to the
LQR algorithm described above can be used to solve this
constrained problem. Recall that the trajectory distributions
are given by p(τ) = p(x1)

∏T
t=1 p(xt+1|xt,ut)p(ut|xt).

Since the dynamics of the new and old trajectory
distributions are assumed to be the same, the KL-divergence
is given by

DKL(p(τ)‖p̂(τ)) =
T∑
t=1

Ep(xt,ut)[log p̂(ut|xt)]−H(p),

and the Lagrangian of the constrained optimization problem
is given by

Ltraj(p, η) = Ep[`(τ)] + η[DKL(p(τ)‖p̂(τ))− ε] =[∑
t

Ep(xt,ut)[`(xt,ut)−η log p̂(ut|xt)]

]
−ηH(p(τ))−ηε.

The constrained optimization can be solved with dual
gradient descent (Boyd and Vandenberghe 2004), where we
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alternate between minimizing the Lagrangian with respect
to the primal variables, which are the parameters of p, and
taking a subgradient step on the Lagrange multiplier η. The
optimization with respect to p can be performed efficiently
using the LQG algorithm, by observing that the Lagrangian
is simply the expectation of a quantity that does not depend
on p and an entropy term. As described above, LQR can be
used to solve maximum entropy control problems where the
objective consists of a term that does not depend on p, and
another term that encourages high entropy. We can convert
the Lagrangian primal minimization into a problem of the
form

min
p(ut|xt)

T∑
t=1

Ep(xt,ut)[
˜̀(xt,ut)]−H(p(ut|xt))

by using the cost ˜̀(xt,ut) =
1
η `(xt,ut)− log p̂(ut|xt).

This objective is simply obtained by dividing the Lagrangian
by η. Since there is only one dual variable, dual gradient
descent typically converges very quickly, usually in under
10 iterations, and because LQR is a very efficient
trajectory optimization method, the entire procedure can be
implemented to run very quickly.

We initialize p(ut|xt) with a fixed covariance Ct and zero
mean, to produce random actuation on the first iteration. The
Gaussian noise used to sample from p(ut|xt) is generated
in advance and smoothed with a Gaussian kernel with a
standard deviation of two time steps, in order to produce
more temporally coherent noise.

(a) Start pose, movement
against gravity

(b) End pose, movement
against gravity

(c) Start pose, movement
assisted by gravity

(d) End pose, movement
assisted by gravity

Figure 4. Positioning task

6 Learning Policies from Experience
In this section, we will describe our first set of experiments,
which uses the trajectory-centric reinforcement learning
algorithm (outlined in Section 5) to learn dexterous

Table 1. Different hand positioning task variations learned

Platform # different task variations learned
Hardware 5 (move assisted by gravity)

2 (move against gravity)
Simulated 5 (move assisted by gravity)

3 (move against gravity)

Table 2. Different object manipulation task variations learned

Platform # different task variations learned
Hardware + 2 ({clockwise & anti-clockwise}
an elongated object rotations along vertical)
object (Fig:3)
Simulated + 13 ({clockwise, anti-clockwise,
4 object clockwise then anti-clockwise}
variations object rotation along vertical

8 ({clockwise, anti-clockwise}
object rotation along horizontal)

manipulation skills from scratch on both the physical and
simulated ADROIT platform. The experiments in this section
are aimed to ascertain whether we can learn complex
manipulation behaviors entirely from scratch, using only
high-level task definitions provided in terms of a cost
function, with the controller learned at the level of valve
opening and closing commands. The particular tasks are
detailed in Table 1 and 2 and shown in the accompanying
video, and include both hand posing behaviors and object
manipulation skills.

6.1 Hand Behaviors
In the first set of tasks, we examine how well trajectory-
centric reinforcement learning can control the hand to reach
target poses. The state space is given by x = (q, q̇, a). Here,
q denotes the vector of hand joint angles, q̇ is the vector of
joint angular velocities, a the vector of cylinder pressures,
and the actions ut correspond to the valve command signals,
which are real-valued and correspond to the degree to which
each valve is opened at each time step. The tasks in this
section require moving the hand to a specified pose from a
given initial pose. We arranged the pair of poses such that in
one task-set the finger motions were helped by gravity, and
in another task-set they had to overcome gravity, as shown
in Figure 4. Note that for a system of this complexity, even
achieving a desired pose can be challenging, especially since
the tendon actuators are in agonist-antagonist pairs and the
forces have to balance to maintain posture. The cost function
at each time step is quite simple and comprises of terms like
distance measure to the goal and control penalties. Weights
are broadly chosen to mark the effective importance between
these terms

`(xt,ut) = ||qt − q∗||2 + 0.001||ut||2,

and the cost at the final time step T emphasizes the target
pose to ensure that it is reached successfully:

`(xT ,uT ) = 10||qt − q∗||2.

6.2 Object Manipulation Behaviors
The manipulation tasks we focused on require in-hand
rotation of elongated objects. We chose this task because
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it involves intermittent contacts with multiple fingers and
is quite dynamic, while at the same time having a certain
amount of intrinsic stability. We studied different variations
(Table 2) of this task with different objects: rotation
clockwise (Figure 1), rotation counter-clockwise, rotation
clockwise followed by rotation counter-clockwise, and
rotation clockwise without using the wrist joint (to encourage
finger oriented maneuvers) – which was physically locked in
that condition. Figure 3 illustrates the start and end poses
and object configurations in the task learned on the ADROIT
hardware platform. The running cost was

`(xt,ut) =0.01||qt − q∗||2 + 0.001||ut||2+
||qpost − qpos∗||2 + 10||qrott − qrot∗x||2

where x = (q, qpos, qrot, q̇, q̇pos, q̇rot, a). Here q denotes the
vector of hand joint angles, qpos the object positions, qrot the
object rotations, a the vector of cylinder pressures, and ut the
vector of valve command signals. At the final time we used

`(xt,ut)t=T =2[0.01||qt − q∗||2 + ||qpost − qpos∗||2

+ 10||qrott − qrot∗x||2].

Here, the cost function included an extra term for desired
object position and orientation. The final cost was scaled by
a factor of 2 relative to the running cost.
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Figure 5. Learning curves for the positioning (top) and
manipulation (bottom) tasks. ∗

6.3 Results
Besides designing the cost functions, minimal parameter
tuning was required to learn each skill. Training consisted
of around 15 iterations. In each iteration we performed 5
trials with different instantiations of the exploration noise
in the controls. The progress of training as well as the final
performance is illustrated in the video accompanying the
submission, and in the figure at the beginning of the paper.

Here we quantify the performance and the robustness to
noise. Figure 5 shows how the total cost for the movement
(as measured by the cost functions defined above) decreased
over iterations of the algorithm. The solid curves are data
from the physical system. Note that in all tasks and task
variations we observe very rapid convergence. Surprisingly,
the manipulation task which is much harder from a control
viewpoint takes about the same number of iterations to learn.

In the positioning task we also performed a systematic
comparison between learning in the physical system and
learning in simulation. Performance early in training was
comparable, but eventually the algorithm was able to find
better policies in simulation. Although it is not shown in
the figure, training on simulation platform happens a lot
faster, because the robot can only run in real-time while the
simulated platform runs faster than real-time, and because
resetting between repetitions needs to be done manually on
the robot.
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Effects of injected noise

Sigma=1
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Figure 6. Effect of noise smoothing on learning. Sigma=1
(width of the Gaussian kernel used for smoothing noise), takes
a slow start but maintains a constant progress. Higher sigma
favors steep decent but it fails to maintain the progress as it is
unable to successfully maintain the stability of the object being
manipulated and ends up dropping it. The algorithm incurs a
huge cost penalty and restarts its decent from there. ∗

We further investigated the effects of exploration noise
magnitude injected during training. Figure 6 shows that for
a relatively small amount of noise performance decreases
monotonically. As we increase the noise magnitude,
sometimes we see faster improvement early on but the

∗ At each iteration, the current controller p(ut|xt) is deployed on the robot
to gather N samples (N = 5 in all of our experiments).
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behavior of the algorithm is no longer monotonic. These are
data on the ADROIT hardware platform.

6.4 Delayed Robustification
Finally, we used the simulation platform to investigate
robustness to perturbations more quantitatively, in the
manipulation task. We wanted to quantify how robust our
controllers are to changes in initial state (recall that the
controllers are local). Furthermore, we wanted to see if
training with noisy initial states, in addition to exploration
noise injected in the controls, will result in more robust
controllers. Naı̈vely adding initial state noise at each iteration
of the algorithm (Algorithm 1) severely hindered the overall
progress. However, adding initial state noise after the policy
was partially learned (iteration ≥ 10 in our case) resulted
in much more robust controllers. We term this strategy as
delayed robustification.
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Figure 7. Robustness to noise in initial state. Each column
corresponds to a different noise level: 5, 10, 20 % of the range
of each state variable. The top row is a controller trained with
noise in the initial state. The bottom row is a controller trained
with the same initial state (no noise) for all trials.

The results of these simulations are shown in Figure 7.
We plot the orientation of the object around the vertical axis
as a function of time. The black curve is the unperturbed
trajectory. As expected, noise injected in the initial state
makes the movements more variable, especially for the
controller that was trained without such noise. Adding initial
state noise during training substantially improved the ability
of the controller to suppress perturbations in initial state.

Overall, we were surprised at how much noise we could add
(up to 20 % of the range of each state variable) without the
hand dropping the object, in the case of the controller trained
with noise. The controller trained without noise dropped the
object in 4 out of 20 test trials. Thus injecting some noise
in the initial state (around 2.5 %) helps improve robustness.
Of course on the real robot we cannot avoid injecting such
noise, because exact repositioning is very difficult.

7 Learning Policies from Experience and
Imitation

The previous section highlighted the strengths of our
reinforcement learning algorithm, outlined in Section 5,
in synthesizing the details of dexterous manipulation
strategies while still preserving sample efficiency. However,
as our algorithm makes progress by optimizing a quadratic
approximation of the cost over a local approximation of
the dynamics, it can become stuck in local minima if the
approximation of the learned dynamics isn’t sufficiently
accurate, or when the cost is not convex. In principle,
arbitrary precision can be achieved by increasing the number
of Gaussian kernels used for the dynamics prior, and by
increasing the number of trajectory samples N used for
the fitting the dynamics. In practice, collecting an arbitrary
number of samples might not be feasible due to time
and computational limitations, especially when physical
robots are involved. Furthermore, many useful task goals
are non-convex, and while the method can optimize non-
convex cost functions, like all local optimization methods,
it does not necessarily converge to a global optimum.
Random exploration can help mitigate some of these issues.
To encourage exploration, we add random noise while
collecting trajectory samples(step 3 of the Algorithm 1). For
tasks where the reward is delayed and there are multiple local
minima, randomly exploring around and hoping to get lucky
takes a big toll on sample efficiency. A well know strategy to
overcome some of these challenges is to imitate an expert,
in order to effectively steer the learned controller towards
an effective solution. However, simply following an expert-
provided behavior does not necessarily produce behavior
that is robust to perturbations. In this section, we describe
how we can combine learning from expert teleoperation with
trajectory-centric reinforcement learning to acquire more
complex manipulation skills that overcome local optima
by following expert demonstrations while still retaining the
robustness benefits of learning from experience.

7.1 Task Details
The task in this second set of experiments consists of picking
up an elongated tube from the table. This task is challenging
because the cost depends on the final configuration of the
tube, which depends in a discontinuous manner on the
positions of the fingers. Furthermore, grasping the tube from
various initial poses involves the use of multiple different
strategies. Note that the hand is rigidly mounted, so the
picking must be done entirely using motion of the wrist and
fingers. The shape of the tube further complicates the task.
Hand is positioned such the tube lies towards one extreme
of hand’s workspace in order to facilitate significant vertical
span for lift up. As a result, the tube is much outside the
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(a) Hardware platform (b) Simulation platform

Figure 8. Initial pose for the pickup task

grasp envelop of the hand, naı̈ve strategies like aligning the
hand to the object’s principal axis and force-closure fail to
be effective as the hand requires complex finger gating to
maneuver the object before grasping can be attempted. The
significant weight of the tube (in comparison to the lifting
capability of the hand) constantly tilts the object out of the
grasp. Successful strategies need to discover ways to use the
thumb and fingers to act as ‘support’ and ‘pivot’ for each
other, in order to reposition and reorient the object leading
to a successful grasp and pick up. Failure to establish either
the support or pivot results in the tube flying out of the
workspace due to a net unbalanced force on the object.

The hand is mounted approximately thirty degrees to the
horizontal. The task starts with the hand in zero position
(Figure 8). The goal is to lift the object from a known
initial pose (the object is being tracked using the PhaseSpace
motion capture system). The tube is considered lifted if it is
in complete control of the hand (i.e. not falling out of the
hand or resting on the table) and all points on the object
are above the ground by a certain height. Note that for
the resemblance between the hardware and the simulated
platform, the contact between the fingers and the ground
plane is disabled for the simulated platform in order to allow
the fingers to curl from below the object.

7.2 Mujoco Haptix
While leveraging an expert is quite desirable, deploying and
exploiting an expert is exceptionally difficult for dexterous
manipulation. This is due to two principal factors. First,
dexterous manipulation strategies are extremely sensitive to
minor variations in the contact forces, contact locations,
and object positions. Thus, minor deviations from the
expert demonstrations can severely affect the effectiveness
of the demonstration. Second, technology to capture the
details of hand manipulation is often unreliable. Unlike
full body movements, hand manipulation behaviors unfold
in a compact region of space co-inhabited by the objects
being manipulated. This makes motion capture difficult, due
to occlusions and, in the case of passive systems, marker
confusion. Manipulation also involves large numbers of
contacts, including dynamic phenomena such as rolling,
sliding, stick-slip, deformations, and soft contacts. The

human hand takes advantage of these rich dynamics, but
recording the data and interpreting it with regard to well-
defined physics models is challenging.

To address these challenges, we exploit the adaptation
capabilities of the brain in order to ship the data collection
from the real world to a physically realistic simulation.
The Mujoco Haptix system (Kumar and Todorov 2015)
was developed to facilitate physically-consistent recording
of rich hand-object interactions. This was done in the
context of the DARPA HAPTIX program and was adapted
for our purposes here. The simulation is based on the
MuJoCo physics engine. The Haptix framework augments
the simulator with real-time motion capture of arm and hand
movements, and stereoscopic visualization using OpenGL
projection from the viewpoint of the users head (which
is also tracked via motion capture.) The resulting system
has empirically-validated end-to-end latency of 42 msec. It
creates a sense of realism which is sufficient for human
users to interact with virtual objects in a natural way. Since
the interaction happens in simulation, we can record every
aspect of it including joint kinematics and dynamics, contact
interactions, simulated sensor readings etc. There are no
sensor technologies available today that could record such
rich dataset from hand-object interactions in the physical
world. Furthermore, since the interaction is based on our
simulation model of multi-joint and contact dynamics, the
dataset is by definition physically-consistent.

(a) Overall setup

(b) Expert interacting with the simulation using Cyber glove
system

Figure 9. Mujoco Haptix system. NVIDIA 3D Vision 2 glasses
are used for stereoscopic visualization, together with a BenQ
GTG XL2720Z stereo monitor. OptiTrack motion capture system
is used for 3D glasses, head, and forearm tracking. A
CyberGlove, calibrated for the ADROIT model, is used for
tracking the finger joints.
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Figure 10. Pick up strategy learned using learning via imitation. The movement starts with aligning the palm with the object, then
curling the fingers under the object followed by an object-reorientation movement that further aligns the object with the palm. The
final movement engages the thumb is squeeze hard again the palm before lifting the wrist upward.

7.3 Expert Demonstrations
We use Mujoco Hapix to capture expert demonstrations.
The expert first goes through a regression based calibration
process, that maps the Cyberglove sensors to the ADROIT
joint space. To enable hand manipulation, we map the joint
angle qc reported by the Cyberglove to actuator commands
using the Equation (2):

ut = kJ tendon(qt − qct), (2)

where qt is the current joint configuration of the hand,
J tendom is the tendon jacobian that maps the joint space
to the tendon space, and k is the gain vector. ut is applied
as controls to the pneumatic actuators and we let the
simulation evolve by stepping the physics of the world
forward in time. Hand-object interactions evolve as the
simulation steps forward. The expert is in a tight feedback
loop with the simulation via the stereoscopic rendering. As
the user interacts with the system by changing its strategy,
hand manipulation behaviors emerge. We record the state
xt and the control trajectory ut over time as demonstration
trajectory. where x = (q,qpos,qrot, q̇, q̇pos, q̇rot,a). Here
q denotes the vector of hand joint angles, qpos the object
positions, qrot the object rotations, a the vector of cylinder
pressures, and u the vector of valve command signals.

7.4 Learning Imitation Policies
We first attempted to learn the pickup task from scratch using
the following cost function:

`(xt,ut) =α1||qt − q∗||2 + α2||ut||2+
α3||qpost − qpos∗||2 + α4||qrott − qrot∗x||2,

where qpos∗ and qrot∗x denote the goal pose of the object,
and q∗ is a target joint angle configuration that corresponds
to a grasp. Simple learning by experience fails to come
up with a strategy that can pick up the rod even after
significant cost parameter tuning. The observed behavior is a
combination of the following: (a) Hand randomly explores
for a while and fails to find the object; (b) The fingers
eventually find the object and knock it away from the
manipulate-able workspace; (c) The fingers keep tapping on
the top of the tube without any significant improvement.
The difficulty in finding a successful pickup behavior stems
from a combination of factors. First, the cost function only
produces a meaningful signal toward the end of the episode,
once the object is already grasped. Second, almost every
strategy that can succeed has to first clear the object and
only then dig the fingers into the space below the tube, with

fingers on both sides to restrict the object’s motion. Lastly,
the high dimensionality of the ADROIT platform means that
the space of successful solutions is very narrow, and a huge
variety of movements are available that all fail at the task.
Note that, for cases where the object isn’t aligned well with
the palm, additional reorientation maneuvers are required in
order to pick up the object, due to the hand’s restricted lateral
mobility.

Our learning process for these skills combines learning
from demonstrations with learning from experience, with the
expert demonstration used to bootstrap the learning process.
The demonstrations are used in 2 ways:

1. Provide a cost function that prevents significant
deviation from expert demonstration behavior.

2. Initialization from expert demonstration to combat the
challenges of high dimensional exploration.

During the learning from experience phase, we use an
additional shaping cost, which is a weak cost term for iLQG
that prevents the learning process from deviating too far
away from the expert demonstration. The assumption here
is that the expert demonstration is already quite good and we
don’t need to deviate too far to improve the solution. The
strength of the shaping cost controls the amount of deviation
from the expert demonstration.

For bootstrapping the initialization using expert demon-
strations, instead of using a random policy in step 3 of the
Algorithm 1 at the initial iteration, small random noise is
injected into the control trajectory of the expert demon-
stration to collect trajectory samples {τi}. This encourages
exploration to be in the neighborhood of the demonstrations
which helps significantly with exploration.

The overall cost we use for trajectory optimization is

`(xt,ut) =||qt − q̂t||2 + 0.1||ut||2 + 50||qposZt − 0.12||2,

where q̂t is the hand configuration of the expert at time t
and qposZt is the vertical height of the object at time t. The
first term is the shaping cost that restricts the learning from
deviating too far from the demonstration, the second term
is the control cost and the final term encourages picking up
the object to a height of 12 cm above the ground. The final
cost is the same as the running cost. Figure 10 presents a
representative pickup behavior achieved using this method,
and Figure 12 shows the performance of this method for local
controllers learned at various positions for generalization as
described in the following section.
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8 Policy Generalization
Section 6 and Section 7 explore the capabilities of
trajectory-centric reinforcement learning to learn robust
local policies for dexterous manipulation of freely-moving
objects. However, the resulting local policies succeed from
specific initial states, and are not designed to handle
significant variation in the initial conditions, such as different
initial placement of the object being manipulated. In this
section, we leverage the simulation platform to investigate
how we can use local policies to learn a global policy
that generalizes. We finally extend our investigation to
obtain effective results on the ADROIT platform, detailed in
Section 9. In particular, our goal is to explore generalization
along two axes

1. Ability to handle variability in the initial poses
2. Ability to handle partial observability and limited

sensing

8.1 Learning Multiple Local Policies
We consider the same pickup task as outlined in Section 7.1
and vary the orientation of the rod at the initial state to
investigate generalization. The goal is to learn a strategy
for this task that succeeds for any initial rod orientation.
This is particularly challenging since the robot cannot
arbitrary translate or reorient the palm (since the hand is
stationary), and therefore must utilize substantially different
grasping strategies for different rod orientations, including
the use of auxiliary finger motions to reposition the rod
into the desired pose. Simple strategies like force closure
are not effective as the object is outside the hands reach.
To mitigate the challenge of local optima and exploration
for this problem, we leverage expert demonstrations. A set
of 10 demonstrations across 180 degrees of variation in
the rod orientation is collected. Figure 11 shows the 10
initial configurations from which expert demonstrations were
provided.

In order to generalize over the range of rod positions,
we first train a number of local policies as described in
Section 7.4 - one for each of the initial poses indicated in
Figure 11, and then explore two ways to synthesize these
local policies into a global policy - using nearest neighbours
and deep neural networks.

Local Policies: Before evaluating generalization, we first
analyze (using the simulated platform) the performance of
expert demonstrations as well as individual local policies
trained with imitation and learning from experience as
described in Section 7.4. For each task execution, we
evaluate the success or failure of a trial according to the
following criteria: a successful picking trial must result in
the object being stationary, both extremity of the rod being
above the ground by a certain height, and the entire rod
aligned with the x-axis, so as to ensure a successful grasp
into the desired goal position. Note that partially successful
executions, where the tube’s center of mass is lifted up but
one of the end points remains on the ground, are marked as
failures.

In Figure 12 (subplots with white background), we
analyze the performance obtained by direct execution of
the expert demonstrations in the local neighborhood of
the poses for which the demonstrations were generated.

Figure 11. The initial poses used for the expert demonstrations

The corresponding angle (as illustrated in Figure 11) is
also highlighted using a dark vertical line for extra clarity.
Successful trials are marked as green circles, while failures
are marked as red crosses. Overall, we observe that most
demonstrations are somewhat successful for the particular
rod angle for which they were created, but the success
rate decreases sharply under variation in the rod pose, with
discontinuous boundaries in the success region (particularly
for pose 9, 3, and 0). Some poses, such as pose 6,
are typically successful, but exhibit a brittle strategy that
sometimes fails right at the pose where demonstration
was gathered, while others, such as poses 3 and 1, fail
sporadically at various rod poses.

As shown in the policy-pose figures (Figure 12 subplots
with blue background), we can learn robust local policies
by training linear gaussian controllers following the method
described in Section 7.4. Each demonstration was subjected
to 10 iterations of learning from experience. The controllers
succeed in a wider neighborhood around their default rod
pose, with the brittle strategy in pose 6 becoming much
more robust, and the region of success for poses 9, 3, and
0 expanding substantially on both sides. The overall costs
and success rates for individual poses are summarized in
Figure 13. While we observe that the overall cost remained
similar, the success rates for varying rod poses increased
substantially, particularly for poses 5, 7, 8, and 9.

While Figure 12 evaluates the local policies in their local
neighbourhood, in Figure 14 we analyze the effectiveness of
these local policies in the entire span of task variations. We
observe that the policies are less effective as they move away
from the zero point (marked with dark vertical line) and there
is not a single policy that is effective across the entire span
of the task variation.
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Figure 12. Robustness of the demo/local-policy in its local neighbourhood: Each subplot represents a set of 100 trials
collected by perturbing the initial pose of the rod and executing the corresponding demo/local-policy. The relevant pose is
mentioned in the figure title and is marked with a solid black vertical line. The X axis denote the initial rod angle used for the trial.
The Y axis denotes the overall cost of the trial trajectory. Successful trials are marked in green and unsuccessful are marked in red.
The over-all success percentage is marked in the X label and the average cost are provided in the Y label. Notice here that
controllers are successful in the range of angles close to their relevant pose, but the performance degrades as you move away from
the range as seen in Figure 14

.

8.2 Synthesis of Global Policy

Given the local policies we trained as described in the
previous section, our goal is to synthesize these into a global

controller which generalizes with variability in pose and is
able to handle partial observability.
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Figure 13. Performance comparison between the expert
demonstrations and the local policies trained around the expert
demonstrations in the local neighbourhood of the task (i.e. the
rod angle with the vertical). In general we see that the local
policies have significantly higher success rates, and generally
lower trajectory costs.

% success pose0 pose1 pose2 pose3 pose4 pose5 pose6 pose7 pose8 pose9 average 

policy-pose0 100.00 100.00 100.00 67.80 100.00 11.36 0.00 0.00 0.00 0.00 47.92

policy-pose1 100.00 100.00 100.00 100.00 66.67 0.00 3.17 0.00 0.00 0.00 46.98

policy-pose2 0.00 100.00 100.00 100.00 100.00 13.16 0.00 0.00 0.00 0.00 41.32

policy-pose3 0.00 0.00 53.52 86.27 36.36 0.00 0.00 22.45 18.57 0.00 21.72

policy-pose4 0.00 5.00 100.00 100.00 95.77 0.00 0.00 0.00 0.00 0.00 30.08

policy-pose5 0.00 0.00 12.50 61.22 100.00 100.00 82.98 29.31 0.00 0.00 38.60

policy-pose6 0.00 23.40 100.00 100.00 100.00 100.00 100.00 2.99 0.00 0.00 52.64

policy-pose7 0.00 0.00 10.53 0.00 0.00 60.87 87.50 93.22 77.94 0.00 33.01

policy-pose8 0.00 0.00 0.00 0.00 0.00 64.91 100.00 100.00 100.00 45.83 41.07

policy-pose9 0.00 0.00 0.00 0.00 19.64 100.00 100.00 80.30 33.33 100.00 43.33

 

Figure 14. Performance of local policies tested across the
entire range of possible rod positions. It is seen that each
controller works well near the range for which it has been
trained but fails to do well for other positions.

We consider two generalization strategies to synthesize
global policies - nearest neighbours and deep neural
networks. To investigate, both these strategies are subjected
to (a) arbitrary initial rod angles (with respect to the vertical),
and (b) full state observation (hand and object details), or
partial observation (only hand details).

8.3 Nearest Neighbor
We can observe from the results in Figure 12 that, after
training, each local policy succeeds in a neighborhood that
extends to the boundary of the next local policy. This
suggests that a relatively simple nearest-neighbor technique
could in principle allow for a non-parametric strategy
to expand the success region to the entire range of rod
orientations. In Figure 15a, we evaluate the performance
of this nearest neighbor strategy, which simply deploys the
local policy trained for the rod orientation that is closest in
terms of Euclidean distance to the orientation observed in
the initial state. Successful trials are marked in green and
failures in red, and the overall success rate is 90.8% under
full observability.

Partial Observability: We want to learn global policies
which are effective with proprioceptive inputs and doesn’t
depend on any external sensing. This will lead to partial
observability as the actual position of the rod being
manipulated is no longer available. We consider two ways
of deploying the nearest neighbor strategy in this partially

observed setting – neighbor selection based on the initial
state, and independent (weighted) selection of neighbors
at each time step in the trajectory. In order to choose the
nearest neighbor based on initial state, since the rod position
isn’t available as input, the mean rod angle is used, thereby
always selecting policy-pose5. While performing neighbor
selection based on the initial rod position we select a local
policy initially and stay with the selected local policy for
the entire horizon. While doing the independent selection of
neighbors at each time step, the policy has the flexibility to
make independent choices at each time step based on the
nearest neighbor to the system’s entire state. Interestingly,
both strategies results in similar behaviours. This is probably
because the independent selection strategy also starts by
choosing the mean pose policy (i.e. policy-pose5) for the
initial approach phase (before any hand-object contact). The
initial approach is perfectly executed due to the absence of
contacts. The state distribution, which consists of only the
hand’s own state, starts to differ a little once interaction
with the object starts. However, the difference in the hand
state is not significant enough (most differences are in the
object pose, which is not observed) for the strategy to switch
to a different local policy. We report results (Figure 15b,
Figure 17) for the scheme based on choosing a local policy
based on initial state, as strategies involving independent
selection of policies at every time step were found to be
less effective. This is expected as the individual policies are
time varying local controllers, and are less likely to provide
meaningful behavior if switched part-way through.

Requirements Using nearest neighbors for generalization
requires retaining the full set of time-varying trajectory-
centric controllers and a metric on which nearest neighbor
queries should be performed (in the fully observed case,
the rod pose). This metric, which is relatively obvious in
the fully observed version of the pickup task, might not be
as obvious in general robotic manipulation tasks involving
variations in multiple dimensions, where the robot must
choose the strategy based on high-dimensional raw sensory
information, such as camera images or inputs from tactile
sensors. Computational requirements are well within the
reach of modern compute hardware.

8.4 Deep Neural Networks
Generalizable global policies can also be learned using
neural networks and supervised learning. Deep neural
networks represent a particularly general and expressive
class of function approximators that are effective in high-
dimensional space and complex sensing, and have been
recently used to learn skills that range from playing
Atari games (Mnih, Kavukcuoglu, Silver, Rusu, Veness,
Bellemare, Graves, Riedmiller, Fidjeland and Ostrovski
2015) to vision-based robotic manipulation (Levine, Finn,
Darrell and Abbeel 2015a).

Here, the global policy that generalizes pick strategies
is represented as a fully connected feed-forward neural
network. We use the collection of local policies, trained from
individual expert demonstrations, to produce training data for
neural network training with supervised learning. 50 sample
trajectories were collected from each local policy (Figure 12)
by executing them from a slightly perturbed initial state.
These samples were then used to train a deep neural network
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Figure 15. Performance of the nearest neighbor policy

with 6 fully connected layers and 150 rectified linear (ReLU)
hidden units in each layer. The over all system details
are represented in Figure 16. The network was trained
either with the full state information provided to the local
policies (which includes the pose and velocity of the rod), or
with partial information (detailed below) reflecting on-board
sensing, with knowledge about the rod pose excluded from
the inputs to the neural network.
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Figure 16. Over architecture of the system using the network
as controller.

The results of the neural network policy with full state
observations are shown in Figure 18a. This result indicates
that the neural network policy trained from the local policies
is generally not as successful as the nearest neighbor strategy
in the fully observed case. This is not particularly surprising:
the nearest neighbor strategy is somewhat of an upper

baseline that uses a set of very successful local policies
that can succeed up to one angle increment, and thus
form overlapping regions of effectiveness. However, the
neural network must distill the distinct strategies of different
local policies into a single coherent function, and therefore
degradation in performance is understandable.

Partial Observability: In order to investigate the
effectiveness of the current generalization strategy in partial
information, we trained a network with only proprioceptive
sensory information as input to the network. Figure 18b
and Figure 18c show the performance of a large and small
neural network trained without the rod pose provided as
input, instead using inputs from the hand’s on-board tactile
sensors in the fingertips. When the network is trained without
observations of the rod pose, it achieves a success rate
of 74%, nearly as high as the fully observed condition.
Note that the performance is significantly higher than the
best local policies (Figure 14)†.09ffgh Interestingly, when
the neural network is not provided with the tactile sensors
either, as shown in Figure 18d, it achieves nearly the
same performance, indicating that even a smaller subset of
proprioception might be enough. This is also not entirely
surprising, since collisions and contacts result in motion of
the fingers that can be detected from proprioception alone.

Requirements: Space and computational requirements
of this generalization strategy are not very significant as
the policy can be saved as the weights of the network,
and running this network is quite inexpensive for modern
compute hardware.
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Figure 17. Performance evaluation of different generalization
strategies. Y axis denotes the success evaluated using 500
samples. X label denotes the generalization strategy and the
composition of the state it uses. We see that the nearest
neighbor strategy is very effective under full observability but
the neural network method does substantially better under
partial observability

Figure 17 puts all our generalization efforts in perspective.
The nearest neighbour strategy performs extremely well
in the fully observed case reaching 90.8 % success.
This strategy fails to remain effective in-case of partial

†It is worth noting here that the hand is reset to the starting state of the
trajectory controller with the closest angle for each rod pose. While these
states are very similar, they may nonetheless provide additional cues to the
network.

Prepared using sagej.cls



Kumar, Gupta, Todorov and Levine 15

observability as this strategy is complete oblivious to the task
variability in absence of information about the rod. On the
other hand, the neural network based strategy fails short to
meet the success achieved by the nearest neighbour policy
under full observability in the given sample budget (we do
believe that it might be possible to boost success using more
samples and more powerful networks) however proves to be
more effective in partially observability where only on-board
sensing is available. The policy learns to distill information
into a robust feedback behavior that can adjust the grasping
strategy based on proprioceptive feedback.

9 Results on ADROIT Hardware Platform
In this section, we present our generalization results for
the pick up task on the ADROIT hardware platform. The
details of the task are the same as mentioned above.
However, we consider generalization both in the position
and orientation of the object. The positional variation spans
the entire workspace of the hand where the rod is reachable
and the orientation generalization is in slightly constrained
neighborhood than the simulated experiments above. We
train a 6 layer fully connected neural network with 120
rectified linear (ReLU) units at each layer. The training
samples are collected by sampling the local controllers
learned around the 4 demonstrations provided by the expert
user. The expert demonstrations were collected at the initial
poses as shown in Figure 19. Local controllers were trained
using 10 iterations of learning via imitation strategy as
mentioned in Section 7. The training set for the network
consists of 20 samples for each pose (i.e. 80 samples
in total). In Figure 20, we cross-validate each policy for
different poses, including random poses. We found that local
controllers are partially successful in a neighborhood wider
than just their own. There is no local controller that works
well for all the poses. Generalization was investigated for
full observability case. The neural network policy performs
at par with the local controllers on the respective poses. The
neural network policy, however, generalizes better than the
individual local policies as conveyed by its higher success
in picking object from random initial configurations. The
nearest neighbour strategy succeeds 100% as evident from
the perfect performance of the individual policies on the
respective neighbourhoods.

10 Discussion and Future Work
We demonstrated learning-based control of a complex, high-
dimensional, pneumatically-driven hand. Our results include
simple tasks such as reaching a target pose, as well as
dynamic manipulation behaviors that involve repositioning
a freely-moving cylindrical object. We also explored more
complex grasping tasks that require repositioning of an
object in the hand and handling delayed rewards, with
the use of expert demonstrations to bootstrap learning.
Aside from the high-level objective encoded in the cost
function and the demonstrations, the learning algorithms
do not use domain knowledge about the task or the
hardware. The experiments show that effective manipulation
strategies can be automatically discovered in this way. We
further evaluated the generalization capabilities of nearest

neighbour based controllers and deep neural network policy
controllers. Nearest neighbor controller were found to be
really effective and serves as a strong upper baseline in case
of full state observability. Their performance significantly
degrades in case of partial observability. Neural network
based controllers performs reasonably well but are not able
to match the performance of the former strategy within
reasonable sample budged. They however stand strong
in case of partial state observability without any loss in
performance. The two methods have relative strengths and
weaknesses and can be improved and perhaps combined
in future work, as described below. The neural network
controller was given access to proprioceptive and tactile
sensory input, but not to vision input about the object state. It
will be interesting to test the network performance with more
complete sensory input.

It may be possible to combine the benefits of the two
generalization methods considered here. While deep learning
is currently popular, there is no reason to limit ourselves
to generic networks. Instead we could consider a mixture-
of-experts architecture (Jordan and Jacobs 1994), where the
gating network corresponds to the switching mechanism
in our current nearest neighbor approach, while the expert
networks correspond to our local trajectory controllers.
We would still want to leverage the power of trajectory
optimization in training the experts, and perhaps use the
current switching mechanism to pre-train the gating network.

Another direction for future work is to expand the set of
tasks under consideration. While the present tasks are quite
complex, they have been selected for their intrinsic stability.
For example, consider our object-spinning task. If we were
to attempt an identical task but with the palm facing down,
our present approach would not work. This is because the
object would drop before we have had time to interact with
it and learn anything. In general, data-driven approaches to
robotics require either an intrinsically stable task (which may
be rare in practice), or a pre-existing controller that is able to
collect relevant data without causing immediate failure. In
this particular case we could perhaps use tele-operation to
obtain such a controller, but a more general and automated
solution is needed.

Finally, even though the focus of this paper is purely
data-driven learning, there is no reason to take such a one-
sided approach longer term. As with every other instance
of learning from limited and noisy data, the best results
are likely to be obtained when data is combined with
suitable priors. In the case of robotics, physics provide
a strong prior that can rule out the large majority of
candidate models and control policies, thereby improving
generalization from limited data on the physical system.
Existing physics simulators can simulate complex systems
such as the one studied here much faster than real-time,
and can be run in parallel. This functionality can be used
for model-predictive control, aided by a neural network
representing a controller and/or a value function (Zhong,
Johnson, Tassa, Erez and Todorov 2013). The model itself
could be a hybrid between a physics-based model with a
small number of parameters learned from data, and a neural
network with a larger number of parameters used to fit the
residuals that the physics-based model could not explain.
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Figure 18. Performance of neural network based generalization strategy

Figure 19. Different poses used for expert demonstrations
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