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Abstract: 
The following work outlines a robust method for accounting the fuzziness of the objective space while 
dealing with the real world optimization problems. Use of mean/approximated value of input 
parameters doesn't account for the variability in the optimized solution inherited due to variability in 
the input parameters which is very crucial, especially in real world problems. The following work 
describes and evaluates a unique solution strategy for optimizing fuzzy multi-objective problems by 
integrating genetic algorithms with concepts of fuzzy logic. The unique way of problem formulation 
required no tweaking in genetic operators of mutation and crossover but the concept of ranking has 
been carefully extended to fuzzy domain. The standard benchmark test function, ZDT [4], have been 
extrapolated to fuzzy domain as FZDT and proposed to be benchmark test function for fuzzy 
optimization algorithms. The results have been successfully verified with FZDT test functions and 
were found coherent with ZDT test functions under classical assumptions. 
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Introduction: 
Multi objective optimization problem is the process of simultaneously optimizing two or more 
conflicting objectives subject to certain constraints. Such problems can be found in various fields: 
product and process design, finance, aircraft design, the oil and gas industry, automobile design, or 
wherever optimal decisions need to be taken in the presence of trade-offs between two or more 
conflicting objectives. Genetic algorithms are a particular class of evolutionary algorithms that use 
techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover 
and is the most commonly used search techniques in computing to find exact or approximate solutions 
to such optimization and search problems. 
In real world problems, parameters of a process are never precisely fixed to a definite value. 
Transients, noise, measurement errors, Instrument’s least count etc makes it even more difficult to 
know their exact value at any time stamp. Even if externally regulated, parameters have some 
variability in their values. This variability has been continuously ignored by using 
mean/approximated/fixed value of the parameters thus losing the precious information about the 
variability in the final optimized solution. 
For example, in an isothermal process, temperature is externally controlled at a certain fixed level. In 
general, for calculations or optimizations, temperature is taken constant at that specified level. But, 
there is always variability or fuzziness about the fixed value in such controlled parameters which 
needs to be preserved and reflected in the final results. 
 
1 Problem Formulation 
A multi-objective fuzzy constrained optimization problem can be represented as: 
 
Minimize Objective Functions:         fi(A,X) i = 1, 2,….., I                               (1) 
Subject to Constraints:                       gj(A,X)      j = 1, 2,.…., J    (2) 
Where  A = (xm : m = 1,2,…..,M) is a M-tuple vector of fuzzy variables, 
 X = (an  : n = 1,2,…...,N) is a N-tuple vector of decision variables, 
In real world problems, the input parameters of an optimization problem inherit variability due to 
external factors. Variability of such parameters is being accounted by taking them fuzzy in nature 
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about the mean/fixed value. The membership function of such parameters can easily be determined by 
repetitive observations and by analyzing extensive data set. Decision variable however are assumed to 
be crisp real numbers. Thus our result accounts and reflects the variability of the plug-in parameters 
while fixing the decision variable at exact values. Since the optimization problem aims to determine 
the optimized value of decision variables (with no inherent variability) based on the information 
concealed within the input parameters (with inherent variability) and the objective space. This 
completely justifies our assumption of taking decision variables to be crisp real numbers and input 
parameters as fuzzy numbers. 
 
2 Fuzzy representation 
A is a generalized fuzzy number as shown in Fig-1. It is described as any fuzzy subset of the real line 
R, whose membership function μA satisfies the following conditions: 

1. μÃ(x)  is a continuous mapping from R to the closed interval [0, 1], 
2. μÃ(x) = 0, -inf<x <a1, 
3. μÃ(x) =L(x) is strictly increasing on [a1, a2] 
4. μÃ(x) =wA , a2<x <a3, 
5. μÃ(x) =R(x) is strictly decreasing on [a3, a4] 
6. μÃ(x) = 0, a4 <x <inf, 

 
Where 0 <wA<1, and a1, a2, a3, and a4 are real numbers. Also this type of generalized fuzzy number 
be denoted as A = (a1, a2, a3, a4; wA)LR. When wA = 1, it can be simplified as A = (a1, a2, a3, a4)LR. 
 
We have taken into account two types of fuzzy numbers in our study- one with triangular membership 
function and other with trapezoidal membership function. 

Where,  a: the leftmost point where μÃ(x) takes the value 1. 
b: the rightmost point where μÃ(x) takes the value 1. 
α: the spread of the fuzzy number to the left of a. 
β: the spread of the fuzzy number to the right of b. 

 

(Triangular membership function, a=b) 
(Trapezoidal membership function) 

Fig-2. 
 

3 Solution strategy: Fuzzy genetic algorithm 
3.1 Genetic Algorithms (GA) 
Genetic Algorithms are probabilistic search algorithms which simulate natural evolution. Genetic 
algorithms find the individual from the search space with the best “genetic material”. The search 
space (called decision space) of a problem is randomly initialized with a collection of individuals. 
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These individuals are represented by characters, strings or matrices which are often referred to as 
chromosomes. The quality of an individual is measured with evaluation functions called objective 
functions. Now, in every iteration, the parent population is subjected to genetic operators of Crossover 
and Mutation to produce the child population. The combined parent and child population is subjected 
to rank based population sizing to produce the next generation. The process iterates until the 
converging criteria is met. 
 
3.2 Fuzzy genetic algorithm (FGA) 
FGA follows the basic framework of a genetic algorithm. 
 
BEGINFGA 
Generation_count =1 
Random initialization of parent population. 
WHILE converging criteria = false 

BEGIN 
Select parents from the population. 
Produce children from the selected parents using genetic operators. 
Extend the population adding the child population to parent population. 
Rank the extended population. 
Size the extended population to obtain the next generation. 
Generation_count= Generation_count+1 
END 

Output the final population. 
END FGA 
 
Fuzzy adaptation of the individual GA steps and other important FGA terminologies has been 
discussed below. 
 
3.2.1 Fuzzy objective space/ Fussy decision space: 

Objective Functions:         fi(A,X) i = 1, 2,….., I                                   (1) 
Constraints:                       gj(A,X)      j = 1, 2,.…., J    (2) 
Where  A = (xm : m = 1,2,…..,M) is a M-tuple vector of fuzzy variables, 

X = (an  : n = 1,2,…...,N) is a N-tuple vector of decision variables, 
As per the problem formulation, decision space is a fuzzy space and the fi's and gi's are fuzzy 
numbers. 
 
3.2.2 Initialization: 
First generation of individuals is randomly initialized.  Individuals are represented as 
strings/arrays/matrices of variables called chromosomes. Since decision variables of FGA are crisp 
real number, the initialization step of FGA is same as that of a normal GA. 
 
3.2.3 Genetic operators – Mutation & Crossover: 
 Mutation and Crossover operators are used to mix genetic materials, called schema, to build new 
schema/genetic material and hence drive the evolution. Genetic operators tweak the chromosome 
sequence of selected parents to produce child chromosomes. Since chromosomes are strings of crisp 
decision variables, crossover operations(like one point Cx, multi point Cx, hereditary Cx etc) and 
mutations operations(like …..) in FGA works in the same way as in normal GA. 
 
3.2.4 Fuzzy Ranking: 
 Rank is a measure of goodness of a solution. The combined population is ranked, following either the 
Goldberg [21] or the Fonseca [22] approach. In the former, the non-dominated members of the 
population are taken out of the population as rank 1. The truncated population is again checked for 
dominance and the non-dominated set is once again removed out of it, this time as rank 2 members, 
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and the procedure continues. In the Fonseca [22] strategy the entire population is checked for 
dominance and the ranks to the individuals are assigned using the formula: 

Ri = 1 + Nd 
Where Ri is the rank of the individual i, and Nd  is the number of individuals that dominate it. In this 
study The Fonseca approach was preferred as it reduces the computational burden.   
A objective vector  (Ω) = (f i: i= 1, 2,…., I) 
Then the condition for dominance between any two objective vectors can be taken as: 
 

 
In other words, if one particular solution is at least as good, or better in terms of all the objective 
functions, when compared to another solution, and definitely better in terms of at least one objective 
function, it is considered to be a weakly dominating solution. Where fuzzy comparisons are made 
using Graded Mean Integration (GMI) 
 
3.2.5 Graded Mean Integration 
GMI is a method of comparing two fuzzy numbers. We compare the numbers based on their 
defuzzified values. The number with higher defuzzified value is larger. The general formula for 
Graded Mean Integration is given by: 

 
Where L(h) and R(h) are the left and right shape functions, respectively and wA is the maximum value 
attained by L(h) and R(h) whereas the minimum value is zero. For a trapezoidal fuzzy number Ã = 
(a,b,α,β) it reduces to P(Ã ) = ( 3a + 3b + β - α )/6 
 
3.2.6 Advanced concepts: 
Due to the inherent beauty of problem formulation, the advances concepts of a GA remain valid for a 
FGA as well. Concepts pertaining to the variable space like Nadir point initialization, normalized 
random population etc can be directly borrowed from GA. The concepts pertaining to decision 
space/objective space like Crowding, rank based sizing etc also remains valid after proper fuzzy 
adaptation. 
 
4 Test functions 
4.1 ZDT: 
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Five functions belonging to the ZDT series of test functions [4] are well known benchmark functions 
for testing GA. These functions checks the convergence and scalability of a GA on parameters like: 
Convex/Non convex optimal fonts, Continuous/Discontinuous fonts, Sparsely/Densely populated 
fonts etc. 

 
4.2 FZDT 
FZDT test functions are fuzzy adaptations of ZDT test functions [4] that provide a check to the 
convergence and scalability of a FGA for above mentioned parameters. 

 
These functions have two objectives that need to be minimized:  
Minimize   f1(X), 
Minimize   f2(X) = g(X) * h( f1(X),g(X) ) 
 

Underlined 5 problems have their Pareto-optimal font when g(X) reaches unity. Although f1 is a single 
variable function, the difficulty of the functions can be enhanced by using a multivariate f1 function.  
 

Table #1: FZDT test functions. 
Function Decision 

Space 
Objective Function Optimal solution 
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Matlab (7.6.0 R2008a) code was developed and above algorithm was tested on Windows XP platform. 
FNMGA was found to be consistent with the FZDT functions. Area between solid blue lines denotes 
the entire spread of the Pareto font. The defuzzified value of the Pareto front (red line) was found to 
resemble the characteristics of the Pareto font of the corresponding ZDT functions. 

 
5.2  FNSGA 
FNSGA II is a fuzzy adaptation of NSGA II algorithm. The initialized population is sorted based on 
non-domination into each front. The first front being completely non-dominant set in the current 
population and the second front being dominated by the individuals in the first front only and the front 
goes so on. Each individual in the each front are assigned rank (fitness) values or based on front in 
which they belong to. Individuals in first front are given a fitness value of 1 and individuals in second 
are assigned fitness value as 2 and so on. In addition to fitness value a new parameter called crowding 
distance is calculated for each individual. The crowding distance is a measure of how close an 
individual is to its neighbors. Large average crowding distance will result in better diversity in the 
population. Parents are selected from the population by using binary tournament selection based on 
the rank and crowding distance. An individual is selected in the rank is lesser than the other or if 
crowding distance is greater than the other 1. The selected population generates offspring from 
crossover and mutation operators. The population with the current population and current offspring is 
sorted again based on non-domination and only the best N individuals are selected, where N is the 
population size. The selection is based on rank and the on crowding distance on the last front. 
 

5.2.1 Results 
A package in for FNSGA II algorithm was developed and above algorithm was tested on Linux 
platform (Debian). FNSGA II was found to be consistent with the FZDT functions. Area between 
solid blue lines denotes the entire spread of the Pareto font. The defuzzified value of the Pareto front 
(red line) was found to resemble the characteristics of the corresponding ZDT functions. 
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6.0 A comparative study of the two FGA: FNMGA & FNSGA II 

A study of the results of the two algorithms was done. For the same no. of generation and same 
population size FNMGA and FNSGA II show variability in convergence and distribution. FNMGA II 
gives better convergence but the distribution of individuals across the Pareto front is not uniform. 
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FNSGA on the other hand falls behind in convergence but display an excellence distribution of 
individuals across the entire frontier 

ZDT Functions FZDT results on NMGA FZDT results on NSGA II 
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7.0 Conclusion 
The results obtained are in direct coherence with that of ZDT functions working in real environment. 
Fuzzy Genetic algorithm successfully maintained the shape and range of the frontier for all FZDT 
functions. The defuzzified values (GMI) of the elite members exactly copied the shape and range of 
the frontier for each of the ZDT functions for real environment. Therefore it can be concluded that the 
Fuzzy genetic algorithm very well captures the essence of multi objective optimization in fuzzy 
domain. And the proposed Fuzzy ZDT (FZDT) test functions can act as a benchmark for testing fuzzy 
genetic algorithms. 
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